Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Statistics HW, we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose...

we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose that the test statistic is z0=2.75 based on a sample size of n=25. Assume that data are normal with mean mu and standa

Inferetial statistics, wat iz z difference b/n logistic regression and mul...

wat iz z difference b/n logistic regression and multiple regression analysis /

Glejser test, Glejser test is the test for the heteroscedasticity in the e...

Glejser test is the test for the heteroscedasticity in the error terms of the regression analysis which involves regressing the absolute values of the regression residuals for the

Explain lie factor, Lie factor : A measure suggested by Tufte for judging t...

Lie factor : A measure suggested by Tufte for judging the honesty of the graphical presentation of data. Which can be calculated as follows   The values close to one are desir

Over dispersion, Over dispersion is the phenomenon which occurs when empir...

Over dispersion is the phenomenon which occurs when empirical variance in the data exceeds the nominal variance under some supposed model. Most often encountered when the modeling

#title.Statistics for management, The growth in bad debt expense for Johnst...

The growth in bad debt expense for Johnston office supply Company over this time period.If this rate continues,estimate the percentage increase in bad debts for 1997,relative to 19

Please answer this question, How large would the sample need to be if we ar...

How large would the sample need to be if we are to pick a 95% confidence level sample: (i) From a population of 70; (ii) From a population of 450; (iii) From a population of 1000;

Describe Generalized principal components analysis, Generalized principal c...

Generalized principal components analysis: The non-linear version of the principal components analysis in which the goal is to determine the non-linear coordinate system which is

Classification and regression tree technique (cart), Classification and reg...

Classification and regression tree technique (CART): The alternative to the multiple regression and associated techniques or methods for determining subsets of the explanatory va

Define mean squarederror, Mean squarederror is the expected value of squar...

Mean squarederror is the expected value of square of the difference between an estimator and the true value of the parameter. If the estimator is unbiased then the mean of the squ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd