Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Forecast, The particular projection which an investigator believes is most ...

The particular projection which an investigator believes is most likely to give an accurate prediction of the future value of some process. Commonly used in the context of the anal

Ordinal variable, Ordinal variable is a measurement which allows a sample ...

Ordinal variable is a measurement which allows a sample of the individuals to be ranked with respect to some characteristic but where differences at different points of the scale

Gaussian markov random field, It is the multivariate normal random vector w...

It is the multivariate normal random vector which satisfies certain conditional independence suppositions. This can be viewed as a model framework which contains a wide range of st

What is statistical inference, What is statistical inference?   Statis...

What is statistical inference?   Statistical inference can be defined as the  method of drawing conclusions from data which are subject to random variations. This is based o

Historigram, difference between histogram and historigram

difference between histogram and historigram

Hirap, #q A paper mill products two grade of paper viz., X & Y. Because of ...

#q A paper mill products two grade of paper viz., X & Y. Because of raw material restriction, it cannot produce more than 400 tons of grade X paper & 300 tons of grade Y paper in a

Cycle plot, The graphical method for studying the behavior of the seasonal ...

The graphical method for studying the behavior of the seasonal time series. In such a plot, the January values of seasonal component are graphed for the upcoming years, then the

Disease mapping, The method of displaying the geographical variability of t...

The method of displaying the geographical variability of the disease on maps using different colors, shading, etc. The logic is not new, but the arrival of computers and computer g

Explain Geometric distribution, Geometric distribution: The probability di...

Geometric distribution: The probability distribution of the number of trials (N) before the first success in the sequence of Bernoulli trials. Specifically the distribution is can

Log-linear models, Log-linear models is the models for count data in which...

Log-linear models is the models for count data in which the logarithm of expected value of a count variable is modelled as the linear function of parameters; the latter represent

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd