Em algorithm, Advanced Statistics

Assignment Help:

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular significance in the context of the incomplete data problems. The algorithm comprises of two steps, called as the E, or
Expectation step and the M, or the Maximization step. In the previous, the expected value of log-likelihood conditional on the observed data and the current estimates of parameters are found. In the M-step, the function is maximized to provide the updated parameter estimates which increase the likelihood. The two steps are alternated until the convergence is attained. The algorithm might, in some cases, becoms very slow to converge.


This is acronym for the Epidemiological, Graphics, Estimation and Testing of the program developed for the analysis of the data from studies in epidemiology. It can be made in use for logistic regression and models might include random effects to permit over dispersion to be modelled. The beta- binomial distribution can be fitted.


Related Discussions:- Em algorithm

Probability, show all the ways in which 3 games of football can be conclude...

show all the ways in which 3 games of football can be concluded(it can be a win W,a loss L,or a draw X)

Population averaged models, Population averaged models are the models for ...

Population averaged models are the models for kind of clustered data in which the marginal expectation of response variable is the main focus of interest. An alternative approach

Fractional factorial design, Designs in which the information on main effec...

Designs in which the information on main effects and low-order inter- actions are attained by running only the fraction of the complete factorial experiment and supposing that part

Locally weighted regression, Locally weighted regression  is the method of ...

Locally weighted regression  is the method of regression analysis in which the polynomials of degree one (linear) or two (quadratic) are used to approximate regression function in

Chernoff''s faces, Chernoff's faces : A method or technique for representin...

Chernoff's faces : A method or technique for representing the multivariate data graphically. Each observation is represented by the computer-created face, the features of which are

Hill-climbing algorithm, Hill-climbing algorithm is  an algorithm which is ...

Hill-climbing algorithm is  an algorithm which is made in use in those techniques of cluster analysis which seek to find the partition of n individuals into g clusters by optimizin

Describe jonckheere terpstra test, Jonckheere Terpstra test  is the test fo...

Jonckheere Terpstra test  is the test for detecting particular types of departures from the independence in a contingency table in which both the row and column categories contain

Doubly multivariate data, This term is sometimes used for the data collecte...

This term is sometimes used for the data collected in those longitudinal studies in which more than the single response variable is recorded for each subject on each occasion. For

Marginal matching, Marginal matching is the matching of the treatment grou...

Marginal matching is the matching of the treatment groups in terms of means or other summary characteristics of matching variables. This has been shown to be almost as efficient a

Data smoothing algorithms, The procedures for extracting the pattern in a s...

The procedures for extracting the pattern in a series of observations when this is obscured by the noise. Basically any such technique or method separates the original series into

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd