What is the integratin of 1/sin2x?, Mathematics

Assignment Help:

∫1/sin2x dx = ∫cosec2x dx = 1/2 log[cosec2x - cot2x] + c = 1/2 log[tan x] + c

Detailed derivation of

∫cosec x dx = ∫cosec x(cosec x - cot x)/(cosec x - cot x) dx

= ∫(cosec2x - cosecxcotx)/(cosecx - cotx) dx

= log[cosecx - cotx] = log[(1-cosx)/sinx]

= log[2sin2(x/2)/2sin(x/2)cos(x/2)]

= log[tan(x/2)]


Related Discussions:- What is the integratin of 1/sin2x?

Determine the function f ( x ) , Determine the function f ( x ) .       ...

Determine the function f ( x ) .             f ′ ( x )= 4x 3 - 9 + 2 sin x + 7e x , f (0) = 15 Solution The first step is to integrate to fine out the most general pos

Relate Fractions and Whole Numbers, Jon ran around a track that was one eig...

Jon ran around a track that was one eighth of a mile long.He ran around the track twenty four times.How many miles did Jon run in all

Prove that if x is a real number then [2x] = [x] + [x + ½ ], Prove that if...

Prove that if x is a real number then [2x] = [x] + [x + ½ ] Ans: Let us consider x be any real number. It comprises two parts: integer and fraction. With no loss of

Eigenvalues and eigenvectors, Review: Systems of Equations - The tradition...

Review: Systems of Equations - The traditional initial point for a linear algebra class. We will utilize linear algebra techniques to solve a system of equations. Review: Matr

Differential equation of newton’s law of cooling , 1. A direction ?eld for...

1. A direction ?eld for a differential equation is shown. Draw, with a ruler, the graphs of the Euler approximations to the solution curve that passes through the origin. Use step

Circles, alternate segment theorum

alternate segment theorum

Differentials, Differentials : In this section we will introduce a nota...

Differentials : In this section we will introduce a notation. We will also look at an application of this new notation. Given a function y = f ( x ) we call dy & dx differen

Distinct eigenvalues, It's now time to do solving systems of differential e...

It's now time to do solving systems of differential equations. We've noticed that solutions to the system, x?' = A x? It will be the form of, x? = ?h e l t Here l and

Evaluate inverse tangents , Evaluate following limits. Solution ...

Evaluate following limits. Solution Here the first two parts are actually just the basic limits including inverse tangents and can easily be found by verifying the fol

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd