Vhdl, Electrical Engineering

Assignment Help:
Im doing my final year project and Im stuck in vhdl coding. The main mission of this project is to design and build a tap changer which is going to be fitted to power transformers for regulation of the output voltage to required levels for the Micro Grid.
The tap changer system will consist of 9 changers with a 4v step having 9 switches/ Relays. 5 relays will be in the first stage, second stage consist of 3 relays, third stage has got 2 relays and the final stage has 1 relay. The voltage range of the tap changer 399- 431, Tap changer will perform step-up or step-down duties depending on what is requires. ( Tap1-399volts, Tap2 403volts, Tap3 407volts, Tap4 411volts, Tap5 415volts, Tap6 419volts, Tap7 423volts, Tap8 427volts, Tap9 2311volts. )
Im using vhdl programme to control the switches( switch1 to switch 9) using Spartan 3 board and displaying the selected switch on the board. I have written a bit of the the code which is at the bottom and im completely stuck I just need help in finishing the code and have attached the You are my last hope .

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity UPDOWNCOUNTERHOLD is
Port ( Clock : in STD_LOGIC;
Reset : in STD_LOGIC;
-- Automatic : in STD_LOGIC;--- AUTOMATIC SELECTION
Tap_set : in STD_LOGIC;--- ACTIVATES THE TAP SELECTED
SW : in STD_LOGIC_VECTOR (8 downto 0);---- switch for Tap 1 up to 9
--SSG_input : in std_logic_vector(3 downto 0); -- input to seven segment display
Tap_Output: out STD_LOGIC_VECTOR (8 downto 0);-- Tap output
SSG_out : out STD_LOGIC_VECTOR (6 downto 0);--- SEVEN SEGMENT OUTPUT DISPLAY
AN0 : out STD_LoGIC);
end UPDOWNCOUNTERHOLD;

architecture Behavioral of UPDOWNCOUNTERHOLD is

Constant Max_tap :integer := 9;-- referance for the switches
signal Max_tap_vector:std_logic_vector(3 downto 0);
Signal Auto :STD_LOGIC;---- signal for Automatic
Signal Tap_select :STD_LOGIC;-----signal for Tap_set
Signal Switch :std_logic_vector(3 downto 0);----- signal for SW
Signal Tap_out :std_logic_vector(3 downto 0);----- signal for Tap_Output
Signal Seven_segment :std_logic_vector(6 downto 0);----- signal for the seven segment display
SIGNAL S_SW :std_logic_vector(3 DOWNTO 0);----- SIGANAL FOR SWITCH IN MAUNAL/TAP SELECT
BEGIN
PROCESS(Clock,Reset,Tap_set)

BEGIN

IF (Reset = ''1'') THEN

Tap_out <= "0001"; -- reset to tap 1
Seven_segment <= "1001111" ;-- reset it to display tap 1

ELSIF (rising_edge(Clock)) THEN

IF (Tap_set = ''1'') THEN

Tap_Out<= Switch; -- running on manual output depends on the tap switch which is on

end if;

IF (Tap_out > Max_tap) THEN ---- If the output is more than 9 reset

Tap_Out<= "0001"; --- reset to tap 1
Seven_segment <= "1001111" ;-- reset it to display tap 1

IF (conv_integer(Max_tap)) = Max_tap_vector then

--IF (conv_integer(Max_tap_vector)) = Max_tap then------converting interger
--OTHER_VECTOR<=(others =>''0'');
END IF;
END IF;
End if;
END PROCESS;
PROCESS(SW,Clock)
Begin
--S_SW <= SW(3 DOWNTO 0) ;
case SW is
when "0001"=>SSG_out<= "1001111";
when "0010"=>SSG_out<= "0010010";
when "0011"=>SSG_out<= "0000110";
when "0100"=>SSG_out<= "1001100";
when "0101"=>SSG_out<= "0100100";
when "0110"=>SSG_out<= "0100000";
when "0111"=>SSG_out<= "0001111";
when "1000"=>SSG_out<= "0000000";
when "1001"=>SSG_out<= "0000100";
--nothing is displayed when a number more than 9 is given as input.
when others =>SSG_out<="1111111" ;
end case ;
END PROCESS;
end Behavioral;
?

Related Discussions:- Vhdl

Factors that influence choice of carrier frequency, 1. Why must a modem be ...

1. Why must a modem be used to transmit binary data through a PSTN? (1) Use sketches and additional text to describe the following modulation methods. (a) Amplitude shift key

Aggregate technical and commercial loss, Aggregate Technical and Commercial...

Aggregate Technical and Commercial Loss It is unfortunate in that addition to T&D losses, there is also a loss in revenue because of non-realisation of billed demand which lea

Inr increment instruction, INR (Increment )  Instruction This  instruct...

INR (Increment )  Instruction This  instruction is used to  increment  the contents  of any  register or memory  location by one. There  are two  format.

Illustrate about crossbar exchange, Q. Explain crossbar exchange, with all ...

Q. Explain crossbar exchange, with all call processing steps and diagrams. Ans: The basic concept of crossbar switching is to provide a matrix of n x m sets of contacts with

Heterodyne wave analyzer, Q.   What is a wave analyzer? Explain any one tec...

Q.   What is a wave analyzer? Explain any one technique of wave analyzer giving its application also. OR Write short note on HETERODYNE Wave analyzer. OR Explai

Evaluate the voltage source, Q. For the capacitor shown in Figure connected...

Q. For the capacitor shown in Figure connected to a voltage source, sketch i(t) and w(t).

Program implementing the conjugate gradient method, Write a program impleme...

Write a program implementing the conjugate gradient method (un-preconditioned). Solve the  matrix equation corresponding to a finite difference node-spacing, h = 0.02m in x and y d

Supernode, how does creating a supernode helps solve the problems?

how does creating a supernode helps solve the problems?

Intrinsic material, Int r insic Material A perfect semicon...

Int r insic Material A perfect semiconductor crystal with no impurities or lattice defects. No carriers at 0 K, since the valence band is completely full and t

DSP-chebyshev, Consider Chebyshev Type I versus Chebyshev Type II (also cal...

Consider Chebyshev Type I versus Chebyshev Type II (also called inverse Chebyshev) Ölters. Which one should be used based on the following criteria? (If there is no difference betw

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd