Simulation of a pn junction, Electrical Engineering

Assignment Help:

Simulation of a pn Junction

An n+ p junction is fabricated on a p-type silicon substrate with NA = 8×1015 cm-3 . The n+ region has a concentration of ND = 1.5×1018 cm-3 and a junction depth of xj = 1.4 μm. The total device depth is 10 μm (from top to bottom contact).

Use Sentaurus to simulate and view the results for the following conditions:

1. Zero Bias, Uniform Doping Profiles Using uniform doping profiles, verifies the 1D and 2D doping concentration of this junction. Also plot the 1D potential across the junction to estimate the built-in potential and depletion region width. Compare the results with the theoretical values.

You may want to use a non-uniform mesh, which is denser in the top 2 μm of the device.

2. Reverse Bias, Uniform Doping Profiles Simulate the diode under reverse bias. Plot the reverse IV characteristics and extract the breakdown voltage. Compare your result with Figure in the text. What is the maximum electric field in the junction just before breakdown?

2305_Simulation of a pn Junction.png

3. Forward Bias, Uniform Doping Profiles Plot the IV relation for this diode under a forward bias between 0 and 1 V. What allows us to raise the forward bias above 0.7 V? How can this be seen from the simulation output?

Hint: Examine the change in the IV curve with increasing voltage and determine the cause of this change.

4. High Temperature, Uniform Doping Profiles The junction temperature is raised to 580°C. Simulate this junction up to a reverse bias of 12V and a forward bias of 1V. Plot and explain the IV characteristics.

5. Reverse Bias, Gaussian n+ Doping Profiles Using a Gaussian profile for the n+ region with peak concentration of 1.5×1018 cm-3 and junction depth of xj = 0.7 μm, verify the 1D and 2D doping concentration of the junction. Plot the 1D potential across the junction to estimate the built-in voltage and depletion width at equilibrium. Compare Vbi with the theoretical value and compare Vbi and junction width to those from part 2. Also, estimate the minority carrier diffusion lengths Ln and Lp.


Related Discussions:- Simulation of a pn junction

Extrinsic material, Extrinsic Material In addition to thermally ge...

Extrinsic Material In addition to thermally generated carriers, it is possible to create carriers in the semiconductor by purposely introducing impurities into the crystal

Discuss applications of dielectrics, Discuss applications of dielectrics. ...

Discuss applications of dielectrics. Application of dielectrics: For various applications various properties of dielectric materials are required as: electrical, mechanical

Develop a block diagram for a two-port network, Q. The equations for a two-...

Q. The equations for a two-port network are given by V 1 = z 11 I 1 + z 12 I 2 0 = z 21 I 1 + (z 22 + Z L )I 2 V 2 = - I 2 Z L (a) Satisfying the equations, dev

Explain microprocessor development system, Explain Microprocessor developme...

Explain Microprocessor development system. Microprocessor development system: Computer systems consist of undergone many changes lately. Machines which once filled large area

Basic aspects of electromechanical energy converters, Q. Basic aspects of e...

Q. Basic aspects of electromechanical energy converters? Whereas detailed differences and particularly challenging problems emerge among various machine types, this section bri

Compute l per unit length for plate, Q. The inductance per unit length in H...

Q. The inductance per unit length in H/mfor parallel plate in?nitely long conductors in air is given by L = µ 0 d/w = 4π×10 -7 d/w, where d and w are inmeters.Compute L (per unit

Diode characteristic, Q. For the circuit shown in Figure(a), determine the ...

Q. For the circuit shown in Figure(a), determine the diode current and voltage and the power delivered by the voltage source. The diode characteristic is given in Figure.

Depletion in mosfert, #Minimum 100 words accepted#explain depletion operati...

#Minimum 100 words accepted#explain depletion operations of MOSFET

Determine the time delay of the cable, Q. Determine the time delay of the c...

Q. Determine the time delay of the cable? An RG-213/U (radio guide 213/universal coaxial cable) is a small-sized, flexible, double-braided cable with silvered-copper conductors

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd