Simulation of a pn junction, Electrical Engineering

Assignment Help:

Simulation of a pn Junction

An n+ p junction is fabricated on a p-type silicon substrate with NA = 8×1015 cm-3 . The n+ region has a concentration of ND = 1.5×1018 cm-3 and a junction depth of xj = 1.4 μm. The total device depth is 10 μm (from top to bottom contact).

Use Sentaurus to simulate and view the results for the following conditions:

1. Zero Bias, Uniform Doping Profiles Using uniform doping profiles, verifies the 1D and 2D doping concentration of this junction. Also plot the 1D potential across the junction to estimate the built-in potential and depletion region width. Compare the results with the theoretical values.

You may want to use a non-uniform mesh, which is denser in the top 2 μm of the device.

2. Reverse Bias, Uniform Doping Profiles Simulate the diode under reverse bias. Plot the reverse IV characteristics and extract the breakdown voltage. Compare your result with Figure in the text. What is the maximum electric field in the junction just before breakdown?

2305_Simulation of a pn Junction.png

3. Forward Bias, Uniform Doping Profiles Plot the IV relation for this diode under a forward bias between 0 and 1 V. What allows us to raise the forward bias above 0.7 V? How can this be seen from the simulation output?

Hint: Examine the change in the IV curve with increasing voltage and determine the cause of this change.

4. High Temperature, Uniform Doping Profiles The junction temperature is raised to 580°C. Simulate this junction up to a reverse bias of 12V and a forward bias of 1V. Plot and explain the IV characteristics.

5. Reverse Bias, Gaussian n+ Doping Profiles Using a Gaussian profile for the n+ region with peak concentration of 1.5×1018 cm-3 and junction depth of xj = 0.7 μm, verify the 1D and 2D doping concentration of the junction. Plot the 1D potential across the junction to estimate the built-in voltage and depletion width at equilibrium. Compare Vbi with the theoretical value and compare Vbi and junction width to those from part 2. Also, estimate the minority carrier diffusion lengths Ln and Lp.


Related Discussions:- Simulation of a pn junction

Weighted resistor and the r-2 r ladder d/a converters, Q. What is the basic...

Q. What is the basic difference between the weighted resistor and the R-2 R ladder D/A converters?

Explain the 16-bit registers dptr and sp of 8051, Explain the 16-bit regist...

Explain the 16-bit registers DPTR and SP of 8051. DPTR: DPTR stands for data pointer. DPTR having of a high byte (DPH) and a low byte (DPL). Its function is to hold a 16-b

Control, The goal of this project is to model a system and to design a cont...

The goal of this project is to model a system and to design a controller for the system so that the closed-loop system performs satisfactorily.

Storage oscilloscope, Aim To build a simple storage oscilloscope usi...

Aim To build a simple storage oscilloscope using the PIC trainer To report on the program's design and operation Equipment PIC Trainer and PICkit3 in-circui

Diffusion capacitance, Diffusion Capacitance Diffusion capacitance is ...

Diffusion Capacitance Diffusion capacitance is the capacitance because of transport of charge carriers among the two terminals of a device, for instance, the diffusion of carr

Explain about elementary direct-current machines, Q. Explain about Elementa...

Q. Explain about Elementary Direct-Current Machines? A preliminary discussion of dc machines, including Equations. The location of the brushes on the commutator arrangement con

Determine the dielectric constant of air in practically, The dielectric con...

The dielectric constant of air is practically taken as (A) more than unity.                         (B) Unity.  (C) less than unity.                           (D) Zero.

Transistors, What is the difference between a hybrid pi and an re model?

What is the difference between a hybrid pi and an re model?

find the thevenin and norton equivalent circuits, The output port of the o...

The output port of the one-port is defined by terminals A and B. Given: R 1 = 10 k_, R 2 = 20 k_, R 3 = 10 k_, and R 4 = 10 k_ V 1 = 20 V and I1 = 0.8 mA a) Find the T

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd