Use newtons method to find out an approximation, Mathematics

Assignment Help:

Use Newton's Method to find out an approximation to the solution to cos x = x which lies in the interval [0,2].  Determine the approximation to six decimal places.

Solution

Firstly note that we weren't given an initial guess. However, we were given an interval in which to look.  We will utilize this to get our initial guess. As noted down above the general rule of thumb in these cases is to take the initial approximation to be the midpoint of the interval.  Thus, we'll utilize x0  = 1 as our initial guess.

Next, recall that we ought to have the function in the form f ( x ) = 0 .  Thus, first we rewrite the equation as,

                                                      cos x - x = 0

Now we can write down the general formula for Newton's Method.  Doing this will frequently simplify up the work a little so generally it's not a bad idea to do this.

                                     xn +1    = xn   - (cos x - x /(- sin x -1))

Now let's get the first approximation.

                             x1  = 1 -( cos (1) -1/- sin (1) -1) = 0.7503638679

At this point we have to point out that the phrase "six decimal places" does not mean only get x1 to six decimal places & then stop. Rather than it means that we continue till two successive approximations agree to six decimal places.

Given that stopping condition we obviously have to go at least one step farther.

x 2 = 0.7503638679 - (cos (0.7503638679) - 0.7503638679/- sin (0.7503638679) -1)

           = 0.7391128909

We've got the approximation to 1 decimal place. Let's accomplish another one, leaving the details of the computation to you.

                                           x3  = 0.7390851334

We've got it to three decimal places. We'll require another one.

                                         x4  = 0.7390851332

And now we've got two approximations that agree to 9 decimal places and therefore we can stop. We will suppose that the solution is approximately x4  = 0.7390851332 .


Related Discussions:- Use newtons method to find out an approximation

Unbounded intervals, Intervals which extend indefinitely in both the ...

Intervals which extend indefinitely in both the directions are known as unbounded intervals. These are written with the aid of symbols +∞  and -  ∞  . The various types

How to converting percents to fractions, How to Converting Percents to Frac...

How to Converting Percents to Fractions ? To convert a percent to a fraction: 1. Remove the percent sign. 2. Create a fraction, in which the resulting number from Step 1 is

Integration, R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

Problems with applying algorithms , PROBLEMS WITH APPLYING ALGORITHMS :  F...

PROBLEMS WITH APPLYING ALGORITHMS :  From your experience, you would agree that children are expected to mechanically apply the algorithms for adding or subtracting numbers, regar

Explain the decimal system in detail, Explain The Decimal System in detail?...

Explain The Decimal System in detail? A decimal, such as 1.23, is made up of two parts: a whole number and a decimal fraction. In 1.23, the whole number is 1 and the decimal fr

Differential equation - variation of parameters, Variation of Parameters ...

Variation of Parameters Notice there the differential equation, y′′ + q (t) y′ + r (t) y = g (t) Suppose that y 1 (t) and y 2 (t) are a fundamental set of solutions for

Determine centigrade equivalent for a temperature, 1. 10 -2 is equal to ...

1. 10 -2 is equal to 2. If 3n = 27, what is the value of (4n) + 1 3. What is 1/100 of 10000? 4. The formula C=5/9 x (F-32) converts Centigrade temperature from Fa

Lattice or complement lattice, Let  be the set of all divisors of n. Constr...

Let  be the set of all divisors of n. Construct a Hasse diagram for D15, D20,D30. Check whether it is a lattice Or Complement lattice.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd