Unit circle, Mathematics

Assignment Help:

Unit circle: The unit circle is one of the most valuable tools to come out in trig.  Unluckily, most people don't study it as well.

Below is the unit circle with just the first quadrant filled in is represented. The process the unit circle works is to draw a line from the center of the circle outside corresponding to a given angle. Then notify at the coordinates of the point where the line & the circle intersect. The first coordinate is the cosine of that angle & the second coordinate is the sine of that angle. We've put some of the basic angles along with the coordinates of their intersections on the unit circle.  Hence, from the unit circle below we can illustrates that cos (? /6 ) = √3 /2 and sin (?/6)= 1/2 .

1143_unit circle.png

Keep in mind how the signs of angles work.  If you rotate into a counter clockwise direction the angle is +ve and if you rotate into a clockwise direction the angle is negative.

Remember as well that one complete revolution is 2 ? , thus the positive x-axis can correspond to either an angle of 0 or 2 ? (or 4 ? , or 6 ? , or -2 ? , or -4 ? , etc. based on the direction of rotation). Similarly, the angle ? /6 given angles: (to pick an angle totally at random) can also be any of the

? /6  +2 ? = 13 ?/6  (start at ? /6  then rotate once around counter clockwise)

? /6  + 4 ? = 25 ?/6  (start at ?/6  then rotate around twice counter clockwise)

? /6  -2 ?=11 ?/6 (start at ?/6      then rotate once around clockwise)

? /6  - 4 ? = 23 ?/6   (start at ?/6 then rotate around twice clockwise)

etc.

Actually ?/6 can be any of the given angles  ?/6 + 2 ? n , n = 0, ±1, ± 2, ±  3,.. In this case n refer to the number of complete revolutions you make around the unit circle begining at 6  .  Positive values of n correspond to counter clockwise rotations & -ve values of n correspond to clockwise rotations.

If you know the first quadrant then you can easily get all the other quadrants from the first along with a small application of geometry.


Related Discussions:- Unit circle

Substitution rule for definite integrals, Substitution Rule for Definite In...

Substitution Rule for Definite Integrals Now we need to go back and revisit the substitution rule as it also applies to definite integrals.  At some level there actually isn't

Compound angles, determine the exact value of cos (11*3.145/6)

determine the exact value of cos (11*3.145/6)

Factor , #Mai iss 3 years younger than twice the age of her brother . If b ...

#Mai iss 3 years younger than twice the age of her brother . If b represents the age of Mai''s brother .which expression below represents Mai''s age 2-3b 3-2b 2b-3 3b-2 2-3b 3-2b q

Determine the solution to the differential equation, Determine the solution...

Determine the solution to the subsequent differential equation. dv/dt = 9.8 - 0.196v Solution Initially we require finding out the differential equation in the accurate

Choose a topic in measurement and design two activities, a) Choose a topic ...

a) Choose a topic in measurement, and design two activities in your context to help your pupils explore and learn the concept. b) Try these activities out on a few children, and

Pair of linear equations in two variables, PAIR OF LINEAR EQUATIONS IN TWO ...

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES: Like  the  crest  of a  peacock so  is  mathematics  at the  head of all knowledge. Example At a certain time in a deer park, t

Consumer behaviour.., consumer behaviour in my feild of studies accounting ...

consumer behaviour in my feild of studies accounting ..

Find out the taylor series for f (x) = ex about x = 0, Find out the Taylor ...

Find out the Taylor Series for f (x) = e x about x = 0. Solution In fact this is one of the easier Taylor Series that we'll be asked to calculate.  To find out the Taylor

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd