Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
ABC is a right-angled isosceles triangle, right-angled at B. AP, the bisector of ∠BAC, intersects BC at P. Prove that AC2 = AP2 + 2(1+√2)BP2
Ans: AC = √2AB (Since AB = BC)
AB/AC = BP/CP (Bisector Theorem)
⇒ CP = √2 BP
AC2 - AP2 = AC2 - (AB2 + BP2)
= AC2 - AB2 - BP2
= BC2 - BP2
= (BP + PC)2 - BP2
= (BP + √2BP)2 - BP2
= 2BP2 + 2√2 BP2
= 2 ( √2 +1) BP2 ⇒ AC2 = AP2 + 2(1+√2)BP2
Proved
how do you solve expressions
If the areas of the circular bases of a frustum of a cone are 4cm 2 and 9cm 2 respectively and the height of the frustum is 12cm. What is the volume of the frustum. (Ans:44cm 2 )
the sides of a quad taken at random are x+3y-7=0 x-2y-5=0 3x+2y-7=0 7x-y+17=0 obtain the equation of the diagonals
r=asin3x
volume=(1/3)(pi)(radius of base)2(height) curved surface area=(pi)(r)(l), r is radius of base and l is length of straight line connecting apex of cone with point on edge of base
area of r=asin3x
5645.356 turn into fraction
Launching a new product (Blackberry Cube) Analysis (target market) Product features Promotions and advertisement sample design (location)
Consider the integral where the notation means a contour that is parallel to the real z axis, but moved down by a distance d . Use the method of steepest descents to deri
how do we figure it out here is an example 3,4,6,9,_,_,_,_,_,. please help
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd