The definition of the limit, Mathematics

Assignment Help:

The Definition of the Limit

In this section we will look at the precise, mathematical definition of three types of limits we'll be looking at the precise definition of limits at finite points which have finite values, limits which are infinity & limits at infinity.  We'll also give the accurate, mathematical definition of continuity.

Let's begin this section out with the definition of a limit at a finite point which has a finite value.

Definition 1 

Let f(x) be a function described on an interval which contains x = a , except possibly at x = a .  Then we say that,

 

If for each number ε > 0 there is some number δ > 0 such that

|f ( x ) - L | < ε             whenever       0 < |x - a| < δ

That's mouth full. Now that it's written down, just what does it mean?

Let's take a look at the given graph and let's also suppose that the limit does exist.

539_limit30.png

What the definition is saying us is that for any number ε > 0 which we pick we can go to our graph and sketch two horizontal lines at L + ε and L - ε as illustrated onto the graph above. Then somewhere out there in the world is another number δ > 0, that we will have to determine, which will let us to add in two vertical lines to our graph at a + δ & a - δ .

Now, if we will take any x in the pink region, i.e. between a + δ and a - δ , then this x will be near to a than either of a + δ and a - δ

                                                   |x - a| < δ

If now we identify the point on the graph which our choice of x gives then this point on the graph will lie in the intersection of the pink and yellow region.  It means that this function value f(x) will be near to L than either of L + ε & L - ε .  Or,

                                                        |f ( x ) - L | < ε

Thus, if we take a value of x in the pink region then the graph for those values of x will lie between the yellow region.

Notice as well that there are in fact an infinite number of possible δ 's that we can select.  Actually, if we go back & look at the graph above this looks like we could have taken a slightly larger δ and yet gotten the graph from that pink region to be totally contained in the yellow region.

Also, notice as well that as the definition points out we only have to ensure that the function is described in some interval around x = a however we don't really care if it is defined at x = a . Recall that limits do not care about what is happening at the point; they only care  about what is happening about the point in question.

Now that we've the definition out of the way & made try to understand it let's illustrates how it's in fact used in practice.

These are a little difficult sometimes and it can take many practice to obtain good at these so don't feel too bad if you don't pick on this stuff right away.  We will look at a couple of examples that work out fairly easily.


Related Discussions:- The definition of the limit

The limit, The Limit : In the earlier section we looked at some problems ...

The Limit : In the earlier section we looked at some problems & in both problems we had a function (slope in the tangent problem case & average rate of change in the rate of chan

Determine the probability - probability example, Consider two bags, A and B...

Consider two bags, A and B, with the following contents Bag A Bag B 3 white marbles 4 white marbles 2 red marbles

Trigonometry, Ashow that sec^2x+cosec^2x cannot be less than 4

Ashow that sec^2x+cosec^2x cannot be less than 4

Partial Differential Equations Walter A Strauss, Find the full fourier Seri...

Find the full fourier Series of e^x on (-l,l)in its real and complex forms. (hint:it is convenient to find the complex form first)

Learning, my math skills are keeping me from getting my ged need help in al...

my math skills are keeping me from getting my ged need help in all areas

Real analysis, .find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd a...

.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even

What is the limit of sin (1/x) when x tends to zero?, As x tends to zero th...

As x tends to zero the value of 1/x tends to either ∞ or -∞. In this situation we will not be sure about the exact value of 1/x. As a result we will not be sure about the exact/app

Example of the commutative property of addition, Tori was asked to provide ...

Tori was asked to provide an example of the commutative property of addition. Which of the subsequent choices would be correct? Using the simple interest formula Interest = pr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd