3-d coordinate system - three dimensional spaces, Mathematics

Assignment Help:

The 3-D Coordinate System

We will start the chapter off with a quite brief discussion introducing the 3-D coordinate system and the conventions that we will be utilizing.  We will as well take a concise look at how the different coordinate systems can alter the graph of an equation.

 Let us first get some basic notation out of the way.  The 3-D coordinate system is frequently denoted by R3.  Similarly the 2-D coordinate system is frequently denoted by R2 and the 1-D coordinate system is represented by Rn.  As well, as you might have guessed then a general n dimensional coordinate system is frequently denoted by Rn.

 Subsequently, let's take a quick look at the basic coordinate system.

786_3-D Coordinate System - Three dimensional spaces.png

The above is the standard placement of the axes in this class.  It is supposed that only the positive directions are displayed by the axes.  If we require the negative axes for any reason we will put them in as required. 

As well note the various points on this sketch.  The point P is the common point sitting out in 3-D space.  If we begin at P and drop straight down until we arrive a z-coordinate of zero we arrive at the point Q.  We state that Q sits in the xy-plane.  The xy-plane refers to all the points that have a zero z-coordinate.  We can as well start at P and move in the other two directions as displayed to get points in the xz-plane (this is S along with a y-coordinate of zero) and the yz-plane (this is R along with an x-coordinate of zero).   

Jointly, the xy, xz, and yz-planes are occasionally termed as the coordinate planes. 

As well, the point Q is often considered to as the projection of P in the xy-plane.  Similarly, R is the projection of P in the yz-plane and S is the projection of P in the xz-plane. 

Several formulas that you are employed to working with in R2 have natural extensions in R3.


Related Discussions:- 3-d coordinate system - three dimensional spaces

Homogeneous differential equation, Assume that Y 1 (t) and Y 2 (t) are two ...

Assume that Y 1 (t) and Y 2 (t) are two solutions to (1) and y 1 (t) and y 2 (t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so, Y

Linear Programming, describe phases of operations research study ?

describe phases of operations research study ?

Formula to know the area of fan will wrap, Aaron is installing a ceiling fa...

Aaron is installing a ceiling fan in his bedroom. Once the fan is in motion, he requires to know the area the fan will wrap. What formula will he use? The area of a circle is π

Basic indefinite integrals- computing indefinite integrals, Basic indefinit...

Basic indefinite integrals The first integral which we'll look at is the integral of a power of x.                                ∫x n dx = (x n +1 / n + 1)+ c,          n

Uniform distribution over the interval, High temperatures in certain city i...

High temperatures in certain city in the month of August follow uniform distribution over the interval 60-85 F. What is probability that a randomly selected August day has a Temper

Example of negative number, Q. Example of negative number? If you take ...

Q. Example of negative number? If you take an elevator 8 stories  down , what would be the opposite of this? The opposite would be that you take the elevator 8 stories  up .

Solids, a can of soup is shaped like wich solid

a can of soup is shaped like wich solid

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd