Technical loss in electrical systems, Electrical Engineering

Assignment Help:

Technical Loss in Electrical Systems

Technical loss is inherent in electrical systems, as all electrical devices have a few resistances and the flow of currents causes a power loss (I2R loss). Integration of this power loss over time, i.e. ∫ I2R.dt is the energy loss. Every element in a power system (a line or a transformer) offers resistance to power flow and, therefore, consumes some energy although performing the duty expected of it. The cumulative energy consumed by all these elements is classified as "Technical Loss." Technical losses are because of energy dissipated in the conductors and equipment used for Transmission, Transformation, Sub- transmission and Distribution of Power. These occur at several places in a distribution system - in lines, mid-span joints and terminations transformers, service cables and connections and etc.

Table: Losses Due to Technical Reasons

•  Line losses

•  Loss in conductors/cables where lowersize conductors are used. This causessags and temperature rise in conductorswhich further aggravate the loss,

•  Loss in higher loaded phase wires due to unbalanced loading,

•  Loss due to current in neutral for cases or unbalance where neutral wires of lowersize are used (like 3 ½ core cables, andneutral wires of size lower than phasewires),

•  Loosening of strands (in multi-strandconductors like ACSR, AAC, AAA, etc.). 

•  Loss in mid-span joints

(or any joint) and at

terminations

•  Contacts of joints due to improper installation and looseness,

•  Contacts of joints due to inadequatesurface area of contact.

•  Loss in transformers

(typically DTs)

 

•  Loose connections at bushings,

•  Bend in jumpers at connectors where the strands are not tightly held,

•  High no-load loss depending on type of core used, 

•  High no-load loss in repaired transformers where the core has not been properly tightened,

•  No load loss in case a large number of lightly loaded DTs,

•  High copper loss for transformers operating at sub-optimal loading which is not commensurate with the designed optimal loading. 

•  Loss in service cables

and connections

•  Undersized service cables,

•  Loss in joints of service cables at the poles/junction boxes,

•  Use of inappropriate fasteners without spring washers at the crimped joints.

•  Loss due to high

impedance faults

•  Tree touching, creepers, bird nesting,

•  Insulator breakages and tracking on surface of the insulator.

•  Loss in re-wired

fuses/jumpers

•  Loose connections,

•  Inadequate size of fuse wires - often a source of hot spots.

The magnitude of energy dissipation depends hugely on the pattern of loading of transmission and distribution lines, kinds of loads, design of lines and etc. It is not probable to eliminate such losses inherent in a system altogether. They could, thus, be reduced to some extent. The technical losses could be further sub-grouped depending upon the stage of power transformation and transmission system as Sub-transmission losses (33 kV/11kV), Transmission losses (400 kV/220 kV/132 kV/66 kV), and Distribution losses (11 kV/0.4 kV).


Related Discussions:- Technical loss in electrical systems

Mention the three transistor configurations, Q. Mention The Three Transisto...

Q. Mention The Three Transistor Configurations? The three transistor configurations are 1)Common emitter configuration 2)Common base configuration 3)Common collector c

Vacancy, i just want to know any vacant in teaching side. Iam interested in...

i just want to know any vacant in teaching side. Iam interested in taking online classes

Define the operation of real mode interrupt, Define the operation of real m...

Define the operation of real mode interrupt. Operation of Real mode interrupt: While the microprocessor completes executing the current instruction, this determines whether a

Compute the mean torque, Q. A rotating electric machine with uniform air ga...

Q. A rotating electric machine with uniform air gap has a cylindrical rotor winding with inductance L 2 =1 H and a stator winding with inductance L 1 =3H. Themutual inductance va

Rlc circuits, Parallel rlc circiut with a variable cap connected in series ...

Parallel rlc circiut with a variable cap connected in series with a resistor

Explain hall effect, Explain Hall Effect. Hall Effect: If a current c...

Explain Hall Effect. Hall Effect: If a current carrying conductor is placed in a magnetic field, a voltage is produced that acts in the perpendicular direction to the current

Explain industry standard architecture bus, Explain the term Industry Stand...

Explain the term Industry Standard Architecture Bus. The Industry Standard Architecture, bus has been approximately since the very start of the IBM-compatible personal computer

Compute the area of each plate for parallel-plate capacitor, Q. For a paral...

Q. For a parallel-plate capacitor with plates of area A m 2 and separation d m in air, the capacitance in farads may be computed from the approximate relation Compute the

Explain about common control, Q. Explain about Common Control? Common C...

Q. Explain about Common Control? Common Control: Those systems in which the control subsystem is outside the switching network are known as common control switching system. Str

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd