Tangents with polar coordinates - parametric equations, Mathematics

Assignment Help:

Tangents with Polar Coordinates

Here we now require to discuss some calculus topics in terms of polar coordinates.

We will begin with finding tangent lines to polar curves.  In this case we are going to suppose that the equation is in the form r = f (θ). Along with the equation in this form we can in fact make use of the equation for the derivative dy/dx.  We derived while we looked at tangent lines along with parametric equations. Though, to do this requires us to come up with a set of parametric equations to present the curve. In fact this is pretty easy to do.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x = r cos θ

y = r sin θ

Now here, we'll use the fact that we were assuming that the equation is in the form r = f (θ).

Substituting this into these equations provides the following set of parametric equations (along with θ like the parameter) for the curve.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x= r cosθ

y = r sinθ

Here now, we'll make use of the reality that we're assuming that the equation is in the form r = f (θ).  Substituting this into these equations provides the subsequent set of parametric equations (with θ like the parameter) for the curve.

x = f (θ) cos θ

 y = f (θ) sin θ

 Now, we will require the following derivatives.

 dx / dθ = f' (θ) cosθ - f (θ) sin θ

= dr / dθ (cosθ) - rsinθ

dy/dθ = f′ (θ) sinθ + f (θ) cosθ

 = dr/dθ (sinθ) + r cosθ


Related Discussions:- Tangents with polar coordinates - parametric equations

Probability, Mike sells on the average 15 newspapers per week (Monday – Fri...

Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers

Geometry, how to make an obtuse scalene triangle FAT with m

how to make an obtuse scalene triangle FAT with m

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1, Solve 4 sin 2 ( t ) - 3 sin ( t /...

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1 . Solution Before solving this equation let's solve clearly unrelated equation. 4x 2 - 3x = 1  ⇒ 4x 2 - 3x -1 = ( 4x + 1) ( x

One integer is four times other what is the value of lesser, One integer is...

One integer is four times other. The sum of the integers is 5. What is the value of the lesser integer? Let x = the lesser integer and now let y = the greater integer. The ?rst

LCM, What is the LCM of 4, 6, 18

What is the LCM of 4, 6, 18

NUMERABILITY, AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROC...

AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROCEDURES (-)(+)(x)(div) BETWEEN EACH NUMBER TO COME UP WITH 8 ?

Definition of concavity, Definition 1: Given the function f (x ) then 1...

Definition 1: Given the function f (x ) then 1. f ( x ) is concave up in an interval I if all tangents to the curve on I are below the graph of f ( x ) . 2. f ( x ) is conca

Semi-infinite slab solution in fourier number, Consider the temperature dis...

Consider the temperature distribution in a 1D flat plate, insulated at x = L and exposed to convective heat transfer at x = 0. On the axes below, sketch what the distribution looks

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd