Surface area- applications of integrals, Mathematics

Assignment Help:

Surface Area- Applications of integrals

In this part we are going to look again at solids of revolution. We very firstly looked at them back in Calculus I while we found the volume of the solid of revolution. In this part we wish to find the surface area of this region.

Thus, for the purposes of the derivation of the formula, let us look at rotating the continuous function

y = f (x) in the interval [a, b]

about the x-axis. Below is an outline (sketch) of a function and the solid of revolution we obtain by rotating the function about the x-axis.

2405_Surface Area- Applications of integrals 5.png

We can obtain a formula for the surface area much more like we derived the formula for arc length. We'll initiate by dividing the integral into n equal subintervals of width Πx. On each subinterval we will estimated the function with a straight line that agrees along with the function at the endpoints of the each interval. Below is a sketch (figure) of that for our representative function using n=4.

165_Surface Area- Applications of integrals 4.png

 

Here, rotate the approximations about the x-axis and we get the subsequent solid.

1958_Surface Area- Applications of integrals 3.png

The approximation on every interval provides a distinct portion of the solid and to make this clear every portion is colored differently. Each of these portions are termed as frustums and we know how to find out the surface area of frustums. The surface area of a frustum is illustrated by,

A = 2πrl

r = ½ (r1 + r2)

r1 = radius of right end

r2 = radius of left end

the length of the slant of the frustum.

For the frustum on the interval [xi-1, x1] we contain,

R1 = f(xi)

R2 = f(xi-1)

l = |Pi-1 Pi| (length of the line segment connecting pi and pi-1)

and we know from the preceding section that,

|Pi-1 Pi| = √ 1 + [f' (xi*)]2 Πx

where xi* is some point in,

[Xi-1, Xi]

Previous to writing down the formula for the surface area we are going to presume that Πx is "small" and since f(x) is continuous we can then assume that,

F (xi) » f (xi*) and f (xi-1) » f (xi*)

Thus, the surface area of the frustum on the interval [Xi-1, Xi] is approximately,

Ai = aΠ (f (xi) + f (xi-1) / 2) |pi-1 pi |

» 2Π f (xi*) √ 1+ [f'(xi*)]Πx

After that the surface area of the whole solid is approximately,

2080_Surface Area- Applications of integrals 2.png

and we can obtain the exact surface area by taking the limit as n goes to infinity.

2422_Surface Area- Applications of integrals 1.png

If we wish to we could as well derive a similar formula for rotating x = h(y) on [c,d] about the y-axis. This would provide the following formula.

S = ∫dc 2Π h (y) √ (1+ [h' (y)]2) dy

Though, these are not the "standard" formulas. Note: The roots in both of these formulas are nothing much more than the two ds's we employed in the previous section.

As well, we will replace f(x) with y and h(y) with x. By doing this gives the following two formulas for the surface area.


Related Discussions:- Surface area- applications of integrals

Example of addition of signed numbers, Example of addition of Signed Number...

Example of addition of Signed Numbers: Example: (-2) + 3 + 4 = 0 - 2 + 3 + 4 Solution: Thus: (-2) + 3 + 4 = 5  Example: 10 + (-5) + 8 + (-7)

Knowing your learner, Here, we have tried to present some of the different ...

Here, we have tried to present some of the different thinking and learning processes of preschool and primary school children, in the context of mathematics learning. We have speci

What is geometry formula to estimate distance, Danielle requires knowing th...

Danielle requires knowing the distance around a basketball court. What geometry formula will she use? The perimeter of a rectangle is two times the length plus two times the wi

Probability., an insurance salesman sells policies to 5 men, all of identic...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 30 years hence is 2/3.Find the p

The alternative hypothesis, The alternative hypothesis When formulatin...

The alternative hypothesis When formulating a null hypothesis we also consider the fact that the belief may be found to be untrue thus we will refuse it.  Therefore we formula

Find fourier series, Question: Find Fourier series for the periodic fun...

Question: Find Fourier series for the periodic function of period 2 π,defined by      f(x) = x 4 ,  - π ≤ x ≤ π

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Differential equations, Verify Liouville''''''''s formula for y "-y" - y'''...

Verify Liouville''''''''s formula for y "-y" - y'''''''' + y = 0 in (0, 1) ?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd