Surface area- applications of integrals, Mathematics

Assignment Help:

Surface Area- Applications of integrals

In this part we are going to look again at solids of revolution. We very firstly looked at them back in Calculus I while we found the volume of the solid of revolution. In this part we wish to find the surface area of this region.

Thus, for the purposes of the derivation of the formula, let us look at rotating the continuous function

y = f (x) in the interval [a, b]

about the x-axis. Below is an outline (sketch) of a function and the solid of revolution we obtain by rotating the function about the x-axis.

2405_Surface Area- Applications of integrals 5.png

We can obtain a formula for the surface area much more like we derived the formula for arc length. We'll initiate by dividing the integral into n equal subintervals of width Πx. On each subinterval we will estimated the function with a straight line that agrees along with the function at the endpoints of the each interval. Below is a sketch (figure) of that for our representative function using n=4.

165_Surface Area- Applications of integrals 4.png

 

Here, rotate the approximations about the x-axis and we get the subsequent solid.

1958_Surface Area- Applications of integrals 3.png

The approximation on every interval provides a distinct portion of the solid and to make this clear every portion is colored differently. Each of these portions are termed as frustums and we know how to find out the surface area of frustums. The surface area of a frustum is illustrated by,

A = 2πrl

r = ½ (r1 + r2)

r1 = radius of right end

r2 = radius of left end

the length of the slant of the frustum.

For the frustum on the interval [xi-1, x1] we contain,

R1 = f(xi)

R2 = f(xi-1)

l = |Pi-1 Pi| (length of the line segment connecting pi and pi-1)

and we know from the preceding section that,

|Pi-1 Pi| = √ 1 + [f' (xi*)]2 Πx

where xi* is some point in,

[Xi-1, Xi]

Previous to writing down the formula for the surface area we are going to presume that Πx is "small" and since f(x) is continuous we can then assume that,

F (xi) » f (xi*) and f (xi-1) » f (xi*)

Thus, the surface area of the frustum on the interval [Xi-1, Xi] is approximately,

Ai = aΠ (f (xi) + f (xi-1) / 2) |pi-1 pi |

» 2Π f (xi*) √ 1+ [f'(xi*)]Πx

After that the surface area of the whole solid is approximately,

2080_Surface Area- Applications of integrals 2.png

and we can obtain the exact surface area by taking the limit as n goes to infinity.

2422_Surface Area- Applications of integrals 1.png

If we wish to we could as well derive a similar formula for rotating x = h(y) on [c,d] about the y-axis. This would provide the following formula.

S = ∫dc 2Π h (y) √ (1+ [h' (y)]2) dy

Though, these are not the "standard" formulas. Note: The roots in both of these formulas are nothing much more than the two ds's we employed in the previous section.

As well, we will replace f(x) with y and h(y) with x. By doing this gives the following two formulas for the surface area.


Related Discussions:- Surface area- applications of integrals

Population problem - nonhomogeneous systems, The next kind of problem seems...

The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single po

Definition of differential equation, The first definition which we must cov...

The first definition which we must cover is that of differential equation. A differential equation is any equation that comprises derivatives, either partial derivatives or ordinar

Determine the differential y = t 3 - 4t 2 + 7t, Determine the differentia...

Determine the differential for following.                                      y = t 3 - 4t 2 + 7t Solution Before working any of these we have to first discuss just

How to convert percentages to decimals, Q. How to Convert Percentages to De...

Q. How to Convert Percentages to Decimals? Ans. Since percent stands for "hundredths", to write a percentage as a decimal you just need to find how many hundredths it repr

Write radicals in exponent form, Write each of the given radicals in expone...

Write each of the given radicals in exponent form. Solution As illustrated in the last two parts of this example we have to be careful with parenthesis.  While we

Compute simple addition, John was doing his homework on vertical addition, ...

John was doing his homework on vertical addition, and had to compute : 5 3+ 3 4  and 6 8 +45 He did the first one easily, just the way his teacher had taught him. He first ad

Precalculuc, evaluate the expression and write the result in the form a + b...

evaluate the expression and write the result in the form a + bi. I^37

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd