Small samples-estimation of population mean , Mathematics

Assignment Help:

Estimation of population mean

If the sample size is small (n<30) the arithmetic mean of small samples are not normally distributed. In such conditions, student's t distribution must be utilized to estimate the population mean.

In this case

Population mean µ = x¯ ±  tS

 x¯ = Sample mean

S =  s/√n

S = standard deviation of samples = 1985_Estimation of population mean.png

for small samples.

n = sample size

v = n - 1 degrees of freedom.

The value of t is acquired from student's t distribution tables for the essential confidence level

Illustration

A random sample of 12 items is taken and is found to have a mean weight of 50 gram and a standard deviation of 9 gram

What is the mean weight of population

a)         Along with 95 percent confidence

b)         Along with 99 percent confidence

Solution

   S = 9; v = n - 1 = 12 - 1 = 11;          

S= s/√n = 9/√12        

µ = x¯ ± t S 

At 95 percent confidence level

µ = 50 ± 2.262

= 50 ± 5.72 grams

Hence we can state with 95 percent confidence that the population mean is among 44.28 and 55.72 gram

At 99 percent confidence level

µ = 50 ± 3.25 (9/√12)

= 50 ± 8.07 gram

 Therefore we can state with 99 percent confidence that the population mean is between 41.93 and 58.07 grams

Note: To employ the t distribution tables it is significant to find the degrees of freedom (v = n - 1). In the illustration above v = 12 - 1 = 11

From the tables we find that at 95 percent confidence level against 11 and under 0.05, the value of t = 2.201

 


Related Discussions:- Small samples-estimation of population mean

Percentage of values will fall in the normal group, If the normal range is ...

If the normal range is 65-10 mg/dl, then what percentage of values will fall in the normal group?

Apply depth-first-search to find out the spanning tree, Apply depth-first-s...

Apply depth-first-search to find out the spanning tree for the subsequent graph with vertex d as the starting vertex.        Ans: Let us begin with node'd'. Mark d as vi

Fundamental theorem of integral facts formulasproperties, Fundamental Theor...

Fundamental Theorem of Calculus, Part I If f(x) is continuous on [a,b] so, g(x) = a ∫ x f(t) dt is continuous on [a,b] and this is differentiable on (a, b) and as,

Mount everest is 29, Mount Everest is 29,028 ft high. Mount Kilimanjaro is ...

Mount Everest is 29,028 ft high. Mount Kilimanjaro is 19,340 ft high. How much taller is Mount Everest? Subtract Mt. Kilimanjaro's height from Mt. Everest's height; 29,028 - 19

Equations in linear algebra and matrices, Equations in linear algebra and m...

Equations in linear algebra and matrices What is Equations in linear algebra and matrices?

Discrete uniform distribution, Discrete Uniform Distribution Acme Limit...

Discrete Uniform Distribution Acme Limited is a car manufacturer. The company can paint the car in 3 possible colors: White, Black and Blue. Until the population is sampled, th

Calculate time interval, From top of a tower a stone is thrown up and it re...

From top of a tower a stone is thrown up and it reaches the ground in time t1. A second stone is thrown down with the same speed and it reaches the ground in t2. A third stone is r

Marketing research, In pharmaceutical product research doctors visit the pl...

In pharmaceutical product research doctors visit the place to learn what

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd