Small samples-estimation of population mean , Mathematics

Assignment Help:

Estimation of population mean

If the sample size is small (n<30) the arithmetic mean of small samples are not normally distributed. In such conditions, student's t distribution must be utilized to estimate the population mean.

In this case

Population mean µ = x¯ ±  tS

 x¯ = Sample mean

S =  s/√n

S = standard deviation of samples = 1985_Estimation of population mean.png

for small samples.

n = sample size

v = n - 1 degrees of freedom.

The value of t is acquired from student's t distribution tables for the essential confidence level

Illustration

A random sample of 12 items is taken and is found to have a mean weight of 50 gram and a standard deviation of 9 gram

What is the mean weight of population

a)         Along with 95 percent confidence

b)         Along with 99 percent confidence

Solution

   S = 9; v = n - 1 = 12 - 1 = 11;          

S= s/√n = 9/√12        

µ = x¯ ± t S 

At 95 percent confidence level

µ = 50 ± 2.262

= 50 ± 5.72 grams

Hence we can state with 95 percent confidence that the population mean is among 44.28 and 55.72 gram

At 99 percent confidence level

µ = 50 ± 3.25 (9/√12)

= 50 ± 8.07 gram

 Therefore we can state with 99 percent confidence that the population mean is between 41.93 and 58.07 grams

Note: To employ the t distribution tables it is significant to find the degrees of freedom (v = n - 1). In the illustration above v = 12 - 1 = 11

From the tables we find that at 95 percent confidence level against 11 and under 0.05, the value of t = 2.201

 


Related Discussions:- Small samples-estimation of population mean

Compute the linear convolution, Compute the linear convolution of the discr...

Compute the linear convolution of the discrete-time signal x(n) ={3, 2, 2,1} and the impulse response function of a filter h(n) = {2, 1, 3} using the DFT and the IDFT.

Elementary row operations, Anne, Betty and Carol went to their local produc...

Anne, Betty and Carol went to their local produce store to buy some fruit. Anne bought one pound of apples and two pounds of bananas and paid $2.11. Betty bought two pounds of appl

Find the surface-radius of earth, a) The distance d that can be seen fro...

a) The distance d that can be seen from horizon to horizon from an airplane varies directly as the square root of the altitude h of the airplane. If d = 213 km for h = 3950

Partial derivatives, So far we have considered differentiation of functions...

So far we have considered differentiation of functions of one independent variable. In many situations, we come across functions with more than one independent variable

What is the continuously compounded forward rate, At time t an investor s...

At time t an investor shorts a $1 face value zero coupon bond that matures at time T = t and uses the entire proceeds to purchase a zero coupon bond that matures at time

Find extrema & relative extrema f ( x ) = x3 on [-2, Recognizes the absolut...

Recognizes the absolute extrema & relative extrema for the given function.                                                    f ( x ) = x 3      on        [-2, 2] Solution :

Vector analysis ...gradient, A body is constrained to move in a path y = 1+...

A body is constrained to move in a path y = 1+ x^2 and its motion is resisted by friction. The co-efficient of friction is 0.3. The body is acted on by a force F directed towards t

Distinct roots, There actually isn't a whole lot to do throughout this case...

There actually isn't a whole lot to do throughout this case.  We'll find two solutions which will form a basic set of solutions and therefore our general solution will be as,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd