Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

How to converting fractions to decimals explain with example, How to Conver...

How to Converting Fractions to Decimals explain with example? To convert fractions to decimals, divide the numerator by the denominator. The quotient is the decimal. Ex

Determine the property of join in a boolean algebra, Determine that in a Bo...

Determine that in a Boolean algebra, for any a and b, (a Λ b) V (a Λ b' ) = a.  Ans: This can be proved either by using the distributive property of join over meet (or of mee

Draw the direction field, Draw the direction field for the subsequent diffe...

Draw the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation.   Solution:  y′ = y - x  To draw direct

Calenders, on which date of the week does 4th december 2001 falls?

on which date of the week does 4th december 2001 falls?

Operations research, Explain Analytical Models in Operations Research with ...

Explain Analytical Models in Operations Research with Application

Implicit - explicit solution, It's easier to describe an explicit solution,...

It's easier to describe an explicit solution, in this case and then tell you what an implicit solution is not, and after that provide you an illustration to demonstrate you the dif

This year he is 651/4 inches tall how many inches did grow, Last year Jonat...

Last year Jonathan was 603/4 inches tall. This year he is 651/4 inches tall. How many inches did he grow? Subtract to find outthe difference in heights. You will need to borro

Find ad, A circle is inscribed in a triangle ABC having sides 8cm, 10cm and...

A circle is inscribed in a triangle ABC having sides 8cm, 10cm and 12cm as shown in the figure. Find AD, BE and CF.

Objectives to knowing your maths learner, Objectives After studying th...

Objectives After studying this unit, you should be able to briefly describe the developmental stages of children's thinking and learning processes; assess the levels

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd