Show operation on jfet, Electrical Engineering

Assignment Help:

Q. Show Operation on JFET?

The junction in the JFETis reverse-biased for normal operation.No gate current flows because of the reverse bias and all carriers flow from source to drain. The corresponding drain current is dependent on the resistance of the channel and the drain-to-source voltage vDS.As vDS is increased for a given value of vGS, the junction is more heavily reverse-biased, when the depletion region extends further into the conducting channel. Increasing vDS will ultimately block or pinch off the conducting channel. After the pinch-off, the drain current iD will be constant, independent of vDS.

693_Show Operation on JFET1.png

It is the active region beyond pinch-off that is useful for the controlled-source operation, since only changes in vGS will produce changes in iD. Figure illustrates the JFET characteristics. Part (a) shows the idealized static characteristics with two regions separated by the dashed line, indicating the ohmic (controlled-resistance or triode) region and the active (controlled-source) region beyond pinch-off. Note that iD is initially proportional to vDS in the ohmic region where the JFET behaves much like a voltage-variable resistance; iD depends on vGS for a given value of vDS in the active region. In a practical JFET, however, the curves of iD versus vDS are not entirely flat in the active region but tend to increase slightly with vDS, as shown in Figure(b);

when extended, these curves tend to intersect at a point of -VA on the vDS axis. Another useful characteristic indicating the strength of the controlled source is the transfer characteristic, relating the drain current iD to the degree of the negative bias vGS applied between gate and source; a cutoff region exists, indicated by the pinch-off voltage -VP , for which no drain current flows, because both vGS and vDS act to eliminate the conducting channel completely.

Mathematically, the drain current in the active controlled-source region is approximately given by:

361_Show Operation on JFET.png

where IDSS, known as the drain-source saturation current, represents the value of iD when vGS = 0.


Related Discussions:- Show operation on jfet

Determine the location and the value of the point charge, Q. The electric f...

Q. The electric field intensity due to a point charge in free space is given to be Determine the location and the value of the point charge.

Series-parallel magnetic circuit, Series-Parallel Magnetic Circuit: Fi...

Series-Parallel Magnetic Circuit: Figure shows an electromagnet made of cast steel contain a coil of 500 turns wound on the central limb. The cross-sectional area of the outer

Power distribution, Power Distribution: - The Energy Conservation Act,...

Power Distribution: - The Energy Conservation Act, 2001, gives the legal framework, institutional arrangement and a regulatory mechanism at the Central and State level to emba

Dc machines, how unbalanced effect in wave winding is considered to be bala...

how unbalanced effect in wave winding is considered to be balanced?

Determine voltage on the self-biased n-channel, Measurements made on the se...

Measurements made on the self-biased n-channel JFET shown in Figure are V GS =-1 V, I D = 4 mA; V GS =-0.5V, I D = 6.25 mA; and V DD = 15 V. (a) Determine V P and I DSS .

Explain the term superscalar architecture, Question 1: a) Describe how...

Question 1: a) Describe how pipelining can improves the efficiency of the fetch-execute cycle. b) Explain the term superscalar architecture. c) Explain the term prin

What is the photon flux - focal spot isotropically, Suppose that the x rays...

Suppose that the x rays are emitted from a focal spot isotropically. The photon flux is 3.28 x 10 6 photons mm -2 sec -1 at a distance of 0.75 m from the focal spot. What is the

State the functions of a fuse, State the functions of a fuse. Fuse is ...

State the functions of a fuse. Fuse is a protective device that made of a thin wire or strip. This strip or wire is placed with the circuit this has to protect, therefore the

Zener breakdown voltage, (a) For the Zener diode series voltage regulator s...

(a) For the Zener diode series voltage regulator shown in the Figure. calculate V L , I Z , V R and P Z for R L = 1.2 KΩ and repeat it for R L = 3 KΩ ? Consider Zener breakdow

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd