Scan conversion of line with the slope, Computer Graphics

Assignment Help:

Scan Conversion of Line with the slope (0 < m < 1)

Currently the pixel positions beside the line path are determined through sampling at Unit x intervals that is, starting from the first point. (x0, y0) of a provided line we step to all successive columns. That is x-position and plots the pixel that scan line y value is closest to the line path. Suppose we proceed in such fashion up to the kth step. The process is demonstrated in following figure. Suppose that we have determined the pixel at (xk, yk). We require deciding that pixel is to be plotted in column xk+ 1. Our options are either (xk +1, yk) or (xk + 1, yk + 1).

1959_Scan Conversion of Line with the slope 1.png

Figure: Scan conversion 0 < m < 1

On sampling position Xk + 1 the vertical pixel or say scan line separation from mathematical line i.e. y = mx + c is say d1 and d2.

Currently, the y coordinate on the mathematical line on pixel column position Xk + 1 is:

y = m (xk + 1) + c                                       ---------------------(1)

By using figure of Scan conversion 0 < m < 1:

d1 = y - yk                                                                             ---------------------(2)

= m (xk + 1) + c - yk                                                  ---------------------(3) (by using (1))

Likewise, d2 = (yk + 1) - y = yk +  1 - m (xk + 1) - c    ---------------------(4)

By using (3) and (4) we get d1 - d2

d1 - d2 = [m (xk + 1) + c - yk] - [yk + 1 - m (xk + 1) - c]

= mxk + m + c - yk - yk - 1 + mxk + m + c

= 2m (xk + 1) - 2yk + 2c - 1                     ---------------------(5)

As, decision parameter p for kth step that is pk is specified by

pk   = Δx(d1 - d2 )---------------------(6)

 

Currently, a decision parameter pk for the kth step in the line algorithm can be acquired by rearranging (5) hence it involves merely integer calculations. To achieve this substitute m = Δy/Δx; here, Δy and Δx ⇒ vertical and horizontal separations of the ending point positions.

pk = Δx (d1 - d2) = Δ x [2m (xk + 1) - 2yk + 2c - 1]

= Δx [2(Δy/Δx)  (xk + 1) - 2yk + 2c - 1]

= 2 Δy (xk + 1) - 2 Δxyk + 2 Δxc - Δx

= 2 Δy xk - 2 Δx yk + [2 Δy + Δx (2c - 1)]

pk  = 2 Δy xk - 2Δxyk + b               -------------------- (7)

Here b is constant with value b = 2Δy + Δx (2c - 1)       ---------------------(8)

Note: sign of pk is as similar as sign of d1 - d2 as it is assumed like Δx > 0; here in figure of Scan conversion 0 < m < 1 , d1 < d2 i.e. (d1 - d2) is -ve that is , pk is negative so pixel Ti is more suitable option otherwise pixel Si is the proper option.

That is (1) if pk < 0 choose Ti, hence subsequent pixel option (xk, yk) is (xk + 1, yk) else (2) if pk > 0 decide Si, so subsequent pixel option after (xk , yk ) is (xk + 1, yk + 1).

At step k + 1 the decision parameter is evaluated via writing (7) as:

pk + 1 = 2Δy xk + 1 - 2Δx yk + 1   + b         ---------------------(9)

Subtracting (7) from (9) we find:

982_Scan Conversion of Line with the slope 2.png

Such recursive calculation of decision parameter is preformed at all integer positions, starting along with the left coordinate ending point of line.

This first parameter p0 is calculated by utilizing Eq(7), and (8) at the beginning pixel position (x0, y0) along with m evaluated as Δy /Δx (that is intercept c = 0)

p0 = 0 - 0 + b = 2Δy + Δx (2 * 0 - 1) = 2Δy - Δx

p0 = 2Δy - Δx                                           -----------------------(10 A)


Related Discussions:- Scan conversion of line with the slope

Z- buffer algorithm, Q.   Describe the z- Buffer algorithm for hidden surfa...

Q.   Describe the z- Buffer algorithm for hidden surface removal. Ans. Z- buffer method: This method compares surface depths at each pixel position on the projection plane. T

Time based and presentation tools, Time Based and Presentation Tools In...

Time Based and Presentation Tools In such authoring systems, components and events are organized beside a timeline, along with resolutions as high as 1/30 second. Time based to

Introduction to computer graphics, Introduction To Computer Graphics ...

Introduction To Computer Graphics Early man employed drawings to communicate even before he learnt to communicate, write or count. Incidentally, these earliest hierogly

Orthographic and oblique projection - viewing transformation, Orthographic ...

Orthographic and Oblique Projection - Viewing Transformation Orthographic projection is the easiest form of parallel projection that is commonly utilized for engineering drawi

Explain about the computer based training, Explain about the Computer Based...

Explain about the Computer Based Training CBT makes use of a computer system to train people in numerous applications. It makes use of self-assessment and multimedia with minim

Filled-area primitives - output primitives, Filled-Area Primitives  Fil...

Filled-Area Primitives  Filled-area primitives are one of the most important types of primitives used in Computer Graphics.  Basically filled-area primitives are meant to fill

High level techniques (motion generalized), High level techniques (motion g...

High level techniques (motion generalized) Techniques utilized to explain general motion behavior of any of graphic object, such techniques are algorithms or models utilized to

Negative accelerations - computer animation, Negative Accelerations - compu...

Negative Accelerations - computer animation In order to incorporate decreasing speed in an animation the time spacing between the frames must decrease, thus there exists lesser

Explain what you understand by corporate style guide, Question 1: (a) ...

Question 1: (a) Explain the term ‘logo' with the use of an example. (b) Explain in detail what three basic questions you need to ask yourself before creating a logo. (c) You

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd