Responses to exponential excitations, Electrical Engineering

Assignment Help:

Responses to Exponential Excitations

Let us consider Aest as a typical exponential excitation in which A is a constant and s is a complex- frequency variablewith a dimension of 1/second such that the exponent st becomes dimensionless.

The variable s can assume real, imaginary, or complex values. The time-invariant dc source is represented by setting s = 0. The use of s = jω would imply sinusoidal excitation.

Note that Aest is the only function for which a linear combination of

1030_Responses to Exponential Excitations.png

in which K1, K2, and K3 are constants has the same shape or waveform as the original signal. Therefore, if the excitation to a linear system is Aest, then the response will have the same waveform.

Recall the volt-ampere relationships (for ideal elements) with time-varying excitation.

1123_Responses to Exponential Excitations1.png

With exponential excitation in which v(t) = Vest and i(t) = Iest, it can be seen that the following holds good because exponential excitations produce exponential responses with the same exponents. (Notationwise, note that v(t) and i(t) represent the real-valued signals, whereas v(t) and i(t) represent complex-valued signals.)

1787_Responses to Exponential Excitations2.png

The preceding equations resemble the Ohm's law relation. The quantities R, sL, and 1/sC have the dimension of ohms, whereas G,1/sL, and sC have the dimension of siemens, or 1/ohm. The ratio of voltage to current in the frequency domain at a pair of terminals is known as the impedance, designated by Z(s), whereas that of current to voltage is called the admittance, designated by Y(s). Note that both the impedance and the admittance are in general functions of the variable s, and they are reciprocal of each other. Such expressions as Equations 15 through 16 relate the amplitudes of the exponential voltages and currents, and are the frequency-domain representations of the elements. Networks drawn using impedance or admittance symbols are known as transformed networks, which play a significant role in finding the network response, as shown in the following examples.


Related Discussions:- Responses to exponential excitations

Find the hysteresis loss in watts, Q. A sample of iron having a volume of 2...

Q. A sample of iron having a volume of 20 cm is subjected to a magnetizing force varying sinusoidally at a frequency of 400 Hz. The area of the hysteresis loop is found to be 80 cm

Evaluate the condition on the amplifier noise temperature, Alow-noise trans...

Alow-noise transducer is connected to an instrumentation system by a cable that generates thermal noise at room temperature. The information-bearing signal has a bandwidth of 6 kHz

Describe the phasor equations, Q. Describe the following phasor equations r...

Q. Describe the following phasor equations represented in the time domain: (a) ¯ E = K1e-¯ γz (b) ¯ E = K2e ¯ γz where z is the space coordinate, K1 and K2 are constants,

The resistance of an electrical conductor, The resistance of an electrical ...

The resistance of an electrical conductor depends on 4 factors, these being:   a)  The length of the conductor   b)  The cross-sectional area of the conductor

Antinoise systems — noise cancellation, Q. Antinoise Systems — Noise Cancel...

Q. Antinoise Systems — Noise Cancellation? Traditionally sound-absorbing materials have been used quite effectively to reduce noise levels in aircraft, amphitheaters, and other

Dc generater, define all the symbols with their unit

define all the symbols with their unit

Determine the full load voltage regulation, A 25KVA, 3 phase, wye-connected...

A 25KVA, 3 phase, wye-connected, 400v synchronous generator has a synchronous impedance of 0.05 +j1.6 ohms per phase. Determine the full load voltage regulation at (a) 0.8 power

Obtain voltage sing the laplace transform method, Obtain v(t) in the circui...

Obtain v(t) in the circuit of Figure by using the Laplace transform method.

Network topology, LAN topologies: Network topology is a physical schematic...

LAN topologies: Network topology is a physical schematic that demonstrates interconnection of the many users. There are four fundamental topologies as under: (i) Direct Connect

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd