Rational exponents, Mathematics

Assignment Help:

Now we have to start looking at more complicated exponents. In this section we are going to be evaluating rational exponents. i.e. exponents in the form

                                                                    b m/n

where m and n both are integers.

We will begin simple by looking at the given special case,

                                                         b1/ n

where n refer to an integer. Once we have figured out the more general case provided above will in fact be pretty simple to deal with.

Let's first described just what we mean by exponents of this form.

        a= b 1/n           is equivalent to                        an  =b

In other terms, when evaluating b 1/n, we are actually asking what number (in this case a) did we rise to the n to get b.  Frequently b 1/n is called the nth root of b.


Related Discussions:- Rational exponents

Tower of hanoi, how to create an activity of tower of hanoi

how to create an activity of tower of hanoi

Area of a hyperbolic wedge, The unit circle will be parametrized by (cosw, ...

The unit circle will be parametrized by (cosw, sinw). Provide a point on it, the region cut out by circle, the x-axis, and the line from the origin to this point has covered area w

How to dealing with exponents on negative bases, How to Dealing With Expone...

How to Dealing With Exponents on Negative Bases ? Exponents work just the same way on negative bases as they do on positive ones: (-2)0 = 1 Any number (except 0) raised to the

What is place value?, WHAT IS PLACE VALUE? : (This section is only for you...

WHAT IS PLACE VALUE? : (This section is only for your assumptions, and not-meant to be passed on to your learners.) You may have realised that in the decimal system the numeral

Linear programming problem, I have a linear programming problem that we are...

I have a linear programming problem that we are to work out in QM for Windows and I can''t figure out how to lay it out. Are you able to help me if I send you the problem?

Example of circles - common polar coordinate graphs, Example of Circles - C...

Example of Circles - Common Polar Coordinate Graphs Example: Graph r = 7, r = 4 cos θ, and r = -7 sin θ on similar axis system. Solution The very first one is a circle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd