Quick sort, Data Structure & Algorithms

Assignment Help:

This is the most extensively used internal sorting algorithm. In its fundamental form, it was invented by C.A.R. Hoare in the year of 1960. Its popularity lies in the easiness of implementation, moderate use of resources & acceptable behavior for a variety of sorting cases. The fundamental of quick sort is the divide & conquer strategy that means Divide the problem [list to be sorted] into sub-problems [sub-lists], till solved sub problems [sorted sub-lists] are found. It is implemented as follows:

Select one item A[I] from the list A[ ].

Rearrange the list so that this item come to the appropriate position, that means all preceding items have a lesser value and all succeeding items contain a greater value than this item.

1.      Place A[0], A[1] .. A[I-1] in sublist 1

2.      A[I]

3.      Place A[I + 1], A[I + 2] ... A[N] in sublist 2

Repeat steps 1 and step 2 for sublist1 and sublist2 until A[ ] is a sorted list. As can be seen, this algorithm contains a recursive structure.

The divide' procedure is of utmost importance in this algorithm. Usually this is implemented as follows:

1.      Select A[I] as the dividing element.

2.         From the left end of the list (A[O] onwards) scan until an item A[R] is found whose value is greater than A[I].

3.         From the right end of list [A[N] backwards] scan until an item A[L] is found whose value is less than A[1].

4.      Swap A[R] & A[L].

5.      Continue steps 2, 3 & 4 till the scan pointers cross. End at this stage.

6.      At this point, sublist1 and sublist2 are ready.

7.      Now do the same for each of sublist1 & sublist2.


Related Discussions:- Quick sort

Pest control program, PART- Pest Control Program Prepare a Pest Contro...

PART- Pest Control Program Prepare a Pest Control Program for the facility that will address the management of Rodents, Insects and Birds. Your Pest Control Program should

Preorder traversal of a binary tree, Preorder traversal of a binary tree ...

Preorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; };   preorder(struct N

Explain the sum of subset problem, a. Explain the sum of subset problem. Ap...

a. Explain the sum of subset problem. Apply backtracking to solve the following instance of sum of subset problem: w= (3, 4, 5, 6} and d = 13. Briefly define the method using a sta

Algorithsm, What are the properties of an algorithsm?

What are the properties of an algorithsm?

Sorting, Sort the following array of elements using quick sort: 3, 1, 4, 1,...

Sort the following array of elements using quick sort: 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8.

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

Define the internal path length, Define the Internal Path Length The In...

Define the Internal Path Length The Internal Path Length I of an extended binary tree is explained as the sum of the lengths of the paths taken over all internal nodes- from th

Preliminaries, Think of a program you have used that is unacceptably slow. ...

Think of a program you have used that is unacceptably slow. Identify the specific operations that make the program slow. Identify other basic operations that the program performs q

Time complexity, Run time complexity of an algorithm is depend on

Run time complexity of an algorithm is depend on

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd