Prims algorithm, Data Structure & Algorithms

Assignment Help:

Prim's algorithm employs the concept of sets. Rather than processing the graph by sorted order of edges, this algorithm processes the edges within the graph randomly by building up disjoint sets.

It employs two disjoint sets A and A. Prim's algorithm works by iterating through the nodes and then determining the shortest edge from the set A to that of set A (that means outside A), followed by the adding up the node to the new graph. While all the nodes are processed, we have a minimum cost spanning tree.

Instead building a sub-graph by inserting one edge at a time, Prim's algorithm builds tree one vertex at a time.

The steps in Prim's algorithm are as:

Consider G be the graph having n vertices for which minimum cost spanning tree is to be made.

Consider T be the minimum spanning tree.

consider T be a single vertex x.

while (T has fewer than n vertices)

{

find the smallest edge connecting T through G-T

add it to T

}

Let the graph of Figure.  And another Figure shows the various steps involved in the construction of Minimum Cost Spanning Tree of graph of this Figure

2433_Prims Algorithm.png

Figure: Construction of Minimum Cost Spanning Tree for the Graph of Figure by application of Prim's algorithm

The following are several steps in the construction of MST for the graph of Figure via Prim's algorithm.

Step 1:  We start along a single vertex (node). Now the set A has this single node and set A has rest of the nodes. Add the edge along the lowest cost from A to A. The edge along cost 4 is added.

Step 2: Lowest cost path through shaded portion of the graph to the rest of the graph (edge along cost 3) is chosen and added to MST.

Step 3: Lowest cost path through shaded portion of the graph to the rest of the graph (edge with cost 6) is chosen and inserted to MST.

Step 4: Lowest cost path from shaded portion of graph to the rest of the graph (edge along cost 73) is chosen and added to MST.

Step 5: The next lowest cost edge to the set not in MST is 8 but makes a cycle. So, it is discarded. The next lowest cost edge 9 is inserted. Now the MST has all the vertices of the graph. This results in the MST of the original graph.

Comparison of Kruskal's algorithm & Prim's algorithm

 

Kruskal's algorithm

Prim's algorithm

Principle

Based on generic minimum cost

spanning tree algorithms

A special case of generic minimum

cost spanning tree algorithm. Operates like Dijkstra's algorithm for finding shortest path in a graph.

Operation

Operates on a single set of

edges in the graph

Operates on two disjoint sets of

edges in the graph

Running time

O(E log E) where E is the

number of edges in the graph

O(E log V), which is

asymptotically same as Kruskal's algorithm

From the above comparison, it might be observed that for dense graphs with more number of edges for a given number of vertices, Prim's algorithm is more efficient.


Related Discussions:- Prims algorithm

Sorting algorithm, Sorting Algorithm A sorting algorithm is an algorit...

Sorting Algorithm A sorting algorithm is an algorithm which puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Eff

Binary search trees, In this unit, we discussed Binary Search Trees, AVL tr...

In this unit, we discussed Binary Search Trees, AVL trees and B-trees. The outstanding feature of Binary Search Trees is that all of the elements of the left subtree of the root

Two - way merge sort, Merge sort is also one of the 'divide & conquer' clas...

Merge sort is also one of the 'divide & conquer' classes of algorithms. The fundamental idea in it is to split the list in a number of sublists, sort each of these sublists & merge

A difference between linear and non linear, state difference between linear...

state difference between linear and non linear data structure. give one example scenario of each

Quick sort, This is the most extensively used internal sorting algorithm. I...

This is the most extensively used internal sorting algorithm. In its fundamental form, it was invented by C.A.R. Hoare in the year of 1960. Its popularity lies in the easiness of i

Row major representation, Row Major Representation In memory the primar...

Row Major Representation In memory the primary method of representing two-dimensional array is the row major representation. Under this representation, the primary row of the a

Implementation of stack, Before programming a problem solution those employ...

Before programming a problem solution those employees a stack, we have to decide how to represent a stack by using the data structures which exist in our programming language. Stac

Explain about the string abstract data type operations, Explain about the S...

Explain about the String Abstract data type operations Symbol ADT has no concatenation operations, but presuming we have a full-featured String ADT, symbols can be concatenated

Functions for inserting and deleting at either of the end, Q. Develop a rep...

Q. Develop a representation for a list where insertions and deletions can be done at either end. Such a structure is known as a Deque (Double ended queue). Write functions for inse

Define the term array, Define the term array. An array is a way to refe...

Define the term array. An array is a way to reference a series of memory locations using the same name. Each memory location is represented by an array element. An  array eleme

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd