How to write binary search algorithm?, Data Structure & Algorithms

Assignment Help:

Q. Write down the binary search algorithm and trace to search element 91 in following given list:

13          30          62           73         81         88             91

What are the major limitations of Binary Search?                                               

Ans.

13   30   62   73   88   91

lets us store the numbers in an array

2064_stack.png


To start with we take low = 0 and high = 5 hence mid = (low+high)/2 = (0+5) /2 = 2

since a[mid] = a[2] = 62 ≠ 91 and low < high we go to next iteration as 62 < 91

∴we take low = mid+1 = 3 and high =

now we find mid =( 3+5)/2 = 4

∴a [mid] = a[4] = 88.

88 is not equal to 91

again 88< 91

∴ we take low = mid +1 = 4 + 1 = 5 and high = 5

∴mid = (5+5)/2 = 5

∴ a[mid] = a[5] = 91 which is the search element.

Limitation of Binary Search is given below: -

(i) The complexity of Binary search is O(log2 n)  the complexity is same irrespective of the  location of the element, even if it is not there in the array.

(ii) The algorithm makes an assumption that one has direct access to middle element in the list on a sub list. This means that the list must be stored in some type of array. Unfortunately inserting an element in an array requires element to be moved down the list and deleting an element from an array requires element to be moved up the list.

(iii) The list must be sorted.


Related Discussions:- How to write binary search algorithm?

Breadth-first search , 1. Apply the variant Breadth-First Search algorithm ...

1. Apply the variant Breadth-First Search algorithm as shown in Figure 2 to the attached graph. This variant is used for computing the shortest distance to each vertex from the sta

Write an algorithm to display this repeated calculation, The following form...

The following formula is used to calculate n: n = x * x/(1 - x) . Value x = 0 is used to stop algorithm. Calculation is repeated using values of x until value x = 0 is input. There

Tradeoff between space and time complexity, We might sometimes seek a trade...

We might sometimes seek a tradeoff among space & time complexity. For instance, we may have to select a data structure which requires a lot of storage to reduce the computation tim

Define the internal path length, Define the Internal Path Length The In...

Define the Internal Path Length The Internal Path Length I of an extended binary tree is explained as the sum of the lengths of the paths taken over all internal nodes- from th

Calculate the k-th power and recursive algorithem, 1. The following is a r...

1. The following is a recursive algorithm to calculate the k -th power of 2. Input k a natural number Output kth power of 2 Algorithem: If k =0then return 1 Else return 2* po

Variable length codes, Variable length codes (Niveau I) Code the following ...

Variable length codes (Niveau I) Code the following sequence of integers (2, 4, 2, 8, 3, 1, 4, 5, 13, 2) with • unary codes • ? codes • d codes • Rice codes (for a suitable l) and

#title.state charts., explain two strategies to implement state charts with...

explain two strategies to implement state charts with the help of an example of each.

Row major representation, Row Major Representation In memory the primar...

Row Major Representation In memory the primary method of representing two-dimensional array is the row major representation. Under this representation, the primary row of the a

Sparse matrix, How sparse matrix stored in the memory of a computer?

How sparse matrix stored in the memory of a computer?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd