Introduction to helping children learn mathematics, Mathematics

Assignment Help:

INTRODUCTION :  Do you remember your school-going days, particularly your mathematics classes? What was it about those classes that made you like, or dislike, mathematics? In this unit we will be raising certain issues related to these questions. It is intimately related to the previous unit, where we discussed some aspects of children of preschool and primary school age. There we observed that:

i) A young child's way of thinking is qualitatively different from that of an adult's.

ii) Children follow a certain pattern in their overall development, and this pattern is more or less universal in nature. Individual children, however, differ in the pace at which they develop.

iii) Each child evolves her own way of 'making sense' of things around her.

iv) By the time a child enters formal school, she already knows some mathematics.

v) Young children use play and other activities to evolve strategies to understand the physical world around them.

vi) Older children also learn with concrete materials and games, and can make sense' of the formal knowledge given to them in school through such learning experiences.

vii) Unfortunately, most mathematics teachers emphasise algorithms and memorisation, rather than understanding. The "rules" of mathematics may be comprehensible to the adult mind, but need to be communicated to children in ways that the children can comprehend.

viii) We are intuitively aware of the long and arduous process that children go through while learning a single mathematical concept or skill. But the time-frame that the formal school system allows for "covering" the syllabus doesn't take this into account.

This list is not exhaustive. Why don't you quickly run and complete the list? You may find this useful, because the present unit focuses on the implications of those points for teaching.

In this unit, we have made an attempt to highlight some of the principles that need to be kept in mind while teaching mathematics to children of preschool and primary school. Doing this would help in creating a learning environment for a preschool or primary school child that is appropriate for her stage of development, her needs, her ways of thinking and learning, and her pace of learning.

We have also given some examples of the kind of activities or opportunities that can be given to children to help them develop mathematical thinking.

Unfortunately, the examples of activities that we suggest are mostly from an urban situation. In fact, it is also difficult to think of examples common to all urban areas. We hope that you will adapt the activities to suit the needs of your learners.


Related Discussions:- Introduction to helping children learn mathematics

Curve tracing, How we calculate region for curve tracing

How we calculate region for curve tracing

Estimate the area of this field in terms of x and y, Jonestown High School...

Jonestown High School has a soccer field whose dimensions can be expressed as 7y 2 and 3xy. What is the area of this field in terms of x and y? Since the area of the soccer ?e

Word problems, Ana has hiked 4 1/2 miles. She is 2/3 of the way along the t...

Ana has hiked 4 1/2 miles. She is 2/3 of the way along the trail. How long is the trail?

Find out equation is a function, Example: Find out which of the following ...

Example: Find out which of the following equations functions are & which are not functions.                            y= 5x + 1 Solution The "working" definition of fu

Advantages and limitations of game theory, Advantages And Limitations Of Ga...

Advantages And Limitations Of Game Theory Advantage Game theory assists us to learn how to approach and understand a conflict condition and to develop the decision making

Multiplication example, Example  Multiply 3x 5 + 4x 3 + 2x - 1 ...

Example  Multiply 3x 5 + 4x 3 + 2x - 1 and x 4 + 2x 2 + 4. The product is given by 3x 5 . (x 4 + 2x 2 + 4) + 4x 3 . (x 4 + 2x 2 + 4) + 2x .

Lattice or complement lattice, Let  be the set of all divisors of n. Constr...

Let  be the set of all divisors of n. Construct a Hasse diagram for D15, D20,D30. Check whether it is a lattice Or Complement lattice.

Modulo Arithmetic, What is Modulo Arithmetic and what is an easy way to rem...

What is Modulo Arithmetic and what is an easy way to remember it?

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part II ...

Fundamental Theorem of Calculus, Part II Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

Partial Differentiation, If the sides angles of a triangle ABC vary in such...

If the sides angles of a triangle ABC vary in such a way that it''s circum - radius remain constant. Prove that, da/cos A +db/cos B+dc/cos C=0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd