Integration by parts -integration techniques, Mathematics

Assignment Help:

Integration by Parts -Integration Techniques

Let's start off along with this section with a couple of integrals that we should previously be able to do to get us started. Firstly let's take a look at the following.

∫ ex dx = ex + c

Thus, that was simple enough.  Now, let's take a look at,

∫ xex2 dx

To do this integral we'll make use of the following substitution.

U = x2   du=2xdx => xdx = ½ du

∫ xex2 dx = ½ ∫ eu du ½ eu + c=1/2 ex2 + c

Once Again, simple enough to do offer you remember how to do substitutions.  By the way ensure that you can do these types of substitutions quickly and easily.  From this point on we are going to be doing these types of substitutions in our head.  If you have to prevent and write these out with each problem you will find out that it will take you considerably longer to do these problems.

Now, let's look at the integral that we really wish to do.

∫ xe6x dx

If we just had an x by itself or e6x by itself we could do the integral easily.  Although, we don't have them by themselves, they are in place of multiplied together.

There is no substitution that we can use on this integral that will allow us to do the integral.  So, at this point we don't have the knowledge to do this integral.

To do this integral we will require to make use of integration by parts so let's derive the integration by parts formula. We'll begin with the product rule.

(f g)′ = f'g + f g′

Here, integrate both sides of this.

∫ (f g)′ dx = ∫ f ′ g + f g′ dx

The left side is very easy to integrate and we'll divide the right side of the integral.

Fg = ∫ f' g dx + ∫ fg'dx

Note: Technically we should comprise had a constant of integration show up on the left side later than doing the integration. We can drop it at this point as other constants of integration will be showing up down the road and they would just end up absorbing this one.

At last, rewrite the formula as follows and we arrive at the integration by parts formula.

∫ f g′ dx = fg - ∫ f ′ g dx

Though, this is not the easy formula to use.  Thus, let's do a couple of substitutions.

u = f (x)

v = g (x)

du = f ′ (x) dx

dv = g ′ (x) dx

Both of these formulas are just the standard Calc I substitutions which hopefully you are used to by now. Don't get excited by the fact that we are by using 2 substitutions here. They will work similar way.

By using these substitutions provides us the formula that most people think of as the integration by parts formula.

∫ u dv = uv - ∫ v du

To employ this formula we will require identifying u and dv, calculating du and v and then using the formula. Note also that computing v is very easy.  All we require to do is integrate dv.

v = ∫ dv

So, let's take a look at the integral above that we specified we wanted to do.


Related Discussions:- Integration by parts -integration techniques

Venn diagram, in a class of 55 students, 35 take english, 40 take french, a...

in a class of 55 students, 35 take english, 40 take french, and 5 take other languages.present this information in a venn diagam and determine how many students take both languages

Example of identify the pre-requisites, Ravi is a teacher of Class 4 in a m...

Ravi is a teacher of Class 4 in a municipal school in Delhi. When the new school year started, he opened the textbook and started teaching the children how to write 4-digit numbers

Volume of solids, find the volume of a rectangular based right pyramid with...

find the volume of a rectangular based right pyramid with its base 18 cm by 24 cm and the slanted edge 39 cm

Explain similar figures in similarity, Explain Similar Figures in similarit...

Explain Similar Figures in similarity ? Similar figures are figures that have the same shape but not necessarily the same size, so the image of a figure is similar to the orig

Geometry, A closed conical vessel of radius 36 cm and height 60 cm, has som...

A closed conical vessel of radius 36 cm and height 60 cm, has some water. When vertex is down then the height of water is 12 cm. What is the height of water when vertex is up?

Word Problem, One box can hold 5 1/2 lbs of nuts and 3 lb 6oz of bolts. Wha...

One box can hold 5 1/2 lbs of nuts and 3 lb 6oz of bolts. What is the total weight for one box?

Evaluate performance of mental arithmetic maths, E 1) Try the two activitie...

E 1) Try the two activities detailed above with a few children around you Evaluate whether they really helped to improve the children's performance of mental arithmetic. Anot

Estimate what is the thickness of the paper, Kenny used a micrometer to mea...

Kenny used a micrometer to measure the thickness of a piece of construction paper. The paper measured halfway among 0.24 millimeters and 0.25 millimeters. What is the thickness of

Smith keeps track of poor work, Smith keeps track of poor work. Often on af...

Smith keeps track of poor work. Often on afternoon it is 5%. If he checks 300 of 7500 instruments what is probability he will find less than 20 substandard?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd