Integration by parts -integration techniques, Mathematics

Assignment Help:

Integration by Parts -Integration Techniques

Let's start off along with this section with a couple of integrals that we should previously be able to do to get us started. Firstly let's take a look at the following.

∫ ex dx = ex + c

Thus, that was simple enough.  Now, let's take a look at,

∫ xex2 dx

To do this integral we'll make use of the following substitution.

U = x2   du=2xdx => xdx = ½ du

∫ xex2 dx = ½ ∫ eu du ½ eu + c=1/2 ex2 + c

Once Again, simple enough to do offer you remember how to do substitutions.  By the way ensure that you can do these types of substitutions quickly and easily.  From this point on we are going to be doing these types of substitutions in our head.  If you have to prevent and write these out with each problem you will find out that it will take you considerably longer to do these problems.

Now, let's look at the integral that we really wish to do.

∫ xe6x dx

If we just had an x by itself or e6x by itself we could do the integral easily.  Although, we don't have them by themselves, they are in place of multiplied together.

There is no substitution that we can use on this integral that will allow us to do the integral.  So, at this point we don't have the knowledge to do this integral.

To do this integral we will require to make use of integration by parts so let's derive the integration by parts formula. We'll begin with the product rule.

(f g)′ = f'g + f g′

Here, integrate both sides of this.

∫ (f g)′ dx = ∫ f ′ g + f g′ dx

The left side is very easy to integrate and we'll divide the right side of the integral.

Fg = ∫ f' g dx + ∫ fg'dx

Note: Technically we should comprise had a constant of integration show up on the left side later than doing the integration. We can drop it at this point as other constants of integration will be showing up down the road and they would just end up absorbing this one.

At last, rewrite the formula as follows and we arrive at the integration by parts formula.

∫ f g′ dx = fg - ∫ f ′ g dx

Though, this is not the easy formula to use.  Thus, let's do a couple of substitutions.

u = f (x)

v = g (x)

du = f ′ (x) dx

dv = g ′ (x) dx

Both of these formulas are just the standard Calc I substitutions which hopefully you are used to by now. Don't get excited by the fact that we are by using 2 substitutions here. They will work similar way.

By using these substitutions provides us the formula that most people think of as the integration by parts formula.

∫ u dv = uv - ∫ v du

To employ this formula we will require identifying u and dv, calculating du and v and then using the formula. Note also that computing v is very easy.  All we require to do is integrate dv.

v = ∫ dv

So, let's take a look at the integral above that we specified we wanted to do.


Related Discussions:- Integration by parts -integration techniques

Parallel and perpendicular lines, The last topic that we have to discuss in...

The last topic that we have to discuss in this section is that of parallel & perpendicular lines. Following is a sketch of parallel and perpendicular lines. Suppose that th

Arc length with vector functions - three dimensional space, Arc Length with...

Arc Length with Vector Functions In this part we will recast an old formula into terms of vector functions.  We wish to find out the length of a vector function, r → (t) =

Explain multiplying-dividing negative fractions, Explain Multiplying/Dividi...

Explain Multiplying/Dividing Negative Fractions? There are 3 steps to multiplying or dividing fractions. 1. If any negative signs are present, place them next to the numerator

Example of integration by parts - integration techniques, Example of Integr...

Example of Integration by Parts - Integration techniques Illustration1:  Evaluate the following integral. ∫ xe 6x dx Solution : Thus, on some level, the difficulty

Division, why 0 is put in quotient while dividing a number

why 0 is put in quotient while dividing a number

Define an ordered rooted tree, Define an ordered rooted tree. Cite any two ...

Define an ordered rooted tree. Cite any two applications of the tree structure, also illustrate using an example each the purpose of the usage.   Ans: A  tree is a graph like t

Scalar equation of plane - three dimensional spaces, Scalar Equation of Pla...

Scalar Equation of Plane A little more helpful form of the equations is as follows. Begin with the first form of the vector equation and write a vector for the difference. {

A card is drawn from a well shuffled deck of cards, A card is drawn from a ...

A card is drawn from a well shuffled deck of cards (i) What are the odds in favour of getting spade? (Ans: 1:3, 3:1, 3:10, 1:25) (ii)  What are the odds against getting a spa

Statistics, if the sum of mean and variance of a binomial distribution is ...

if the sum of mean and variance of a binomial distribution is 4.8 for five trials, the distribution

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd