Homogeneous differential equation, Mathematics

Assignment Help:

Assume that Y1(t) and Y2(t) are two solutions to (1) and y1(t) and y2(t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so,

Y1 (t) - Y2 (t) is a solution to (2) and it can be written as

Y1 (t ) - Y2 (t ) =  c1 y1 (t ) + c2 y2 (t)

Note the notation used now. Capital letters considered as solutions to (1) while lower case letters considered as to solutions to (2. It is a fairly common convention while dealing with non-homogeneous differential equations.

This theorem is simple enough to prove thus let's do that. To prove this Y1(t) - Y2(t) is a solution to (2) all we require to do is plug this in the differential equation and check this.

(Y1 (t ) - Y2 (t ))'' + p(t) (Y1 (t ) - Y2 (t ))' + q(t) (Y1 (t ) - Y2 (t )) = 0

Y''1 + p(t) Y'1 + q(t) Y1 - (Y''2 + p(t) Y'2 + q(t) Y2) = 0

g(t) - g(t) = 0

0 = 0

We utilized the fact that Y1(t) and Y2(t) are two solutions to (1) into the third step. Since they are solutions to (1) we know as

Y''1 + p(t) Y'1 + q(t) Y1 = g(t)

Y''2 + p(t) Y'2 + q(t) Y2 = g(t)

Therefore, we were capable to prove that the difference of the two solutions is a solution to (2).

Proving as,

Y1 (t) - Y2 (t) = c1 y1 (t ) + c2 y2 (t) is even easier.

As y1(t) and y2(t) are a fundamental set of solutions to (2) we identify that they form a general solution and thus any solution to (2) can be written as,

Y (t) = c1 y1 (t ) + c2 y2 (t)

Well, Y1(t) - Y2(t) is a solution to (2), as we've illustrated above, thus it can be written as,

Y1 (t) - Y2 (t) = c1 y1 (t ) + c2 y2 (t)

Thus, what does this theorem do for us? We can utilize this theorem to write down the type of the general solution to (1). Let's assume that y(t) is the general solution to (1) and that YP(t) is any solution to (1) which we can get our hands on. After that using the second part of our theorem as,

y(t) - Yp(t) = c1 y1 (t) + c2 y2(t)

Here y1(t) and y2(t) are a fundamental set of solutions for (2). So solving for y(t) provides,

y(t) = c1 y1 (t) + c2 y2(t) + Yp(t)

We can here call,

yc= c1 y1 (t ) + c2 y2 (t)

The complementary solution and YP(t) a specific solution. The general solution to a differential equation can after that be written as,

y(t) = yc + Yp(t)

Here, to solve a nonhomogeneous differential equation, we will require solving the homogeneous differential equation, (2), that for constant coefficient differential equations is pretty simple to do, and we'll require a solution to (1).

It seems to be a circular argument. So as to write down a solution to (1) we require a solution. Though, this isn't the problem that this seems to be. There are ways to get a solution to (1).

They just won't, in common, be the general solution. Actually, the next two sections are devoted to accurately that, finding a particular solution to a non-homogeneous differential equation.

There are two general methods for determining particular solutions: Undetermined Coefficients and Variation of Parameters. Both have their disadvantages and advantages as you will see in the subsequent couple of sections.


Related Discussions:- Homogeneous differential equation

Geometria, un prisma retto ha per base un rombo avente una diagonale lunga ...

un prisma retto ha per base un rombo avente una diagonale lunga 24cm. sapendo che la superficie laterale e quella totale misurano rispettivamente 2800cm e3568cm ,calcola la misura

Constant aceleration formulae, a car comes to a stop from a speed of 30m/s ...

a car comes to a stop from a speed of 30m/s in a distance of 804m. The driver brakes so as to produce a decelration of 1/2m per sec sqaured to begin withand then brakes harder to p

Geometry, In the diagram points V,W,X,Y and Z are collinear, VZ=52, XZ= 20 ...

In the diagram points V,W,X,Y and Z are collinear, VZ=52, XZ= 20 AND WX=XY=YZ. Find the indicated length of WX, VW, WY, VX, WZ, and VY

Factoring polynomials, Factoring polynomials is probably the most important...

Factoring polynomials is probably the most important topic. We already learn factor of polynomial .If you can't factor the polynomial then you won't be able to even start the probl

What is the sale price of the printer, A printer which sells for $190 is on...

A printer which sells for $190 is on sale for 20% off. What is the sale price of the printer? The printer is 20% off. That means that it is 80% of its original price (100% - 2

Graph, Graph A graph G = (V, E) contains a (finite) set that is denote...

Graph A graph G = (V, E) contains a (finite) set that is denote by V, or by V(G) if one wishes to make clear which graph is under consideration, and a collection E, or E(G), o

Coordinate geometry, find the points on y axis whose distances from the poi...

find the points on y axis whose distances from the points A(6,7) and B(4,-3) are in the ratio 1:2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd