Homogeneous differential equation, Mathematics

Assignment Help:

Assume that Y1(t) and Y2(t) are two solutions to (1) and y1(t) and y2(t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so,

Y1 (t) - Y2 (t) is a solution to (2) and it can be written as

Y1 (t ) - Y2 (t ) =  c1 y1 (t ) + c2 y2 (t)

Note the notation used now. Capital letters considered as solutions to (1) while lower case letters considered as to solutions to (2. It is a fairly common convention while dealing with non-homogeneous differential equations.

This theorem is simple enough to prove thus let's do that. To prove this Y1(t) - Y2(t) is a solution to (2) all we require to do is plug this in the differential equation and check this.

(Y1 (t ) - Y2 (t ))'' + p(t) (Y1 (t ) - Y2 (t ))' + q(t) (Y1 (t ) - Y2 (t )) = 0

Y''1 + p(t) Y'1 + q(t) Y1 - (Y''2 + p(t) Y'2 + q(t) Y2) = 0

g(t) - g(t) = 0

0 = 0

We utilized the fact that Y1(t) and Y2(t) are two solutions to (1) into the third step. Since they are solutions to (1) we know as

Y''1 + p(t) Y'1 + q(t) Y1 = g(t)

Y''2 + p(t) Y'2 + q(t) Y2 = g(t)

Therefore, we were capable to prove that the difference of the two solutions is a solution to (2).

Proving as,

Y1 (t) - Y2 (t) = c1 y1 (t ) + c2 y2 (t) is even easier.

As y1(t) and y2(t) are a fundamental set of solutions to (2) we identify that they form a general solution and thus any solution to (2) can be written as,

Y (t) = c1 y1 (t ) + c2 y2 (t)

Well, Y1(t) - Y2(t) is a solution to (2), as we've illustrated above, thus it can be written as,

Y1 (t) - Y2 (t) = c1 y1 (t ) + c2 y2 (t)

Thus, what does this theorem do for us? We can utilize this theorem to write down the type of the general solution to (1). Let's assume that y(t) is the general solution to (1) and that YP(t) is any solution to (1) which we can get our hands on. After that using the second part of our theorem as,

y(t) - Yp(t) = c1 y1 (t) + c2 y2(t)

Here y1(t) and y2(t) are a fundamental set of solutions for (2). So solving for y(t) provides,

y(t) = c1 y1 (t) + c2 y2(t) + Yp(t)

We can here call,

yc= c1 y1 (t ) + c2 y2 (t)

The complementary solution and YP(t) a specific solution. The general solution to a differential equation can after that be written as,

y(t) = yc + Yp(t)

Here, to solve a nonhomogeneous differential equation, we will require solving the homogeneous differential equation, (2), that for constant coefficient differential equations is pretty simple to do, and we'll require a solution to (1).

It seems to be a circular argument. So as to write down a solution to (1) we require a solution. Though, this isn't the problem that this seems to be. There are ways to get a solution to (1).

They just won't, in common, be the general solution. Actually, the next two sections are devoted to accurately that, finding a particular solution to a non-homogeneous differential equation.

There are two general methods for determining particular solutions: Undetermined Coefficients and Variation of Parameters. Both have their disadvantages and advantages as you will see in the subsequent couple of sections.


Related Discussions:- Homogeneous differential equation

Rounding decimals, i need help rounding decimals to the nearest 100th and t...

i need help rounding decimals to the nearest 100th and tenth

Covariance, Covariance The variance is a measure of the variabil...

Covariance The variance is a measure of the variability or dispersion in a variable or data set. A measure of the variability of one variable (or data set) in relatio

Solid Mensuration, The two sides of a triangle are 17 cm and 28 cm long, an...

The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to

Minimax regret method -decision making under uncertainty, MINIMAX regret me...

MINIMAX regret method Minimax method assumes that the decision maker will experience 'regret' after he has made the decision and the events have happened. The decision maker ch

Evaluate the volume of a ball, Evaluate the volume of a ball whose radius i...

Evaluate the volume of a ball whose radius is 4 inches? Round to the nearest inch. (π = 3.14) a. 201 in 3 b. 268 in 3 c. 804 in 3 d. 33 in 3 b. The volume of a

Find the discount factors -linear interpolation, Find the discount factors ...

Find the discount factors -Linear interpolation: All rates should be calculated to 3 decimal places in % (e.g. 1.234%), the discount factors to 5 decimal places (e.g. 0.98765

Why is it important the the enlightenment grew out, Why is it important the...

Why is it important the the Enlightenment grew out of the salons and other meeting places of Europe? Who was leading the charge? Why was this significant? Where there any names or

Conclude the values of the six trigonometric functions, Conclude the values...

Conclude the values of the six trigonometric functions: Conclude the values of the six trigonometric functions of an angle formed through the x-axis and a line connecting the

Subtraction of like terms with same signs, Suppose we are required to...

Suppose we are required to find the difference between 3abc and 7abc. We look at two scenarios. The value we would obtain by subtracting a larger quantity from th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd