Bernoulli differential equations, Mathematics

Assignment Help:

In this case we are going to consider differential equations in the form,

y′ + p ( x ) y q ( x ) y n

Here p(x) and q(x) are continuous functions in the interval we're working on and n is a real number.  Differential equations in this form are termed as Bernoulli Equations.

First notice that if n = 0 or n = 1 so the equation is linear and we already identify how to resolve it in these cases. Thus, in this case we're going to be considering solutions for values of n other than these two.

In order to resolve these we'll first divide the differential equation via yn to find,

y-n y' + p(x) y1-n = q (x)

We are now uses the substitution v = y1-n to convert this in a differential equation in terms of v.  When we'll see this will cause a differential equation which we can resolve.

We are going to have to be careful along with this though as it comes to dealing along with the derivative, y′.  We require determining just what y′ is in terms of our substitution. It is simple to do than it might at first look to be. All which we require to do is differentiate both sides of our substitution regarding x. Note here that both v and y are functions of x and so we'll require using the chain rule on the right side.  If you keep in mind your Calculus I you'll recall it is just implicit differentiation.  Thus, taking the derivative provides us:

n' = (1 - n) y-n y'

Then, plugging it and also our substitution in the differential equation provides:

1/(1- n) n' + p(x) n = q(x)

It is a linear differential equation which we can solve for v and once we get this in hand we can also find the solution to the original differential equation through plugging v back in our substitution and solving for y.


Related Discussions:- Bernoulli differential equations

Decision theory, Decision Theory Decisions There are many types of ...

Decision Theory Decisions There are many types of decision making 1.      Decision making under uncertainty It refer to situations where more than one outcome can r

Geometric mean-geometric progression, Geometric mean - It is a measure ...

Geometric mean - It is a measure of central tendency normally utilized to measure industrial increases rates. - It is explained as the nth root of the product of 'n' observa

Geometry, how can you tell qhich trangle is sss,asa, sas, and aas s

how can you tell qhich trangle is sss,asa, sas, and aas s

Determine boolean conjunctive query are cyclic or acyclic, Are the followin...

Are the following Boolean conjunctive queries cyclic or acyclic? (a) a(A,B) Λ b(C,B) Λ c(D,B) Λ d(B,E) Λ e(E,F) Λ f(E,G) Λ g(E,H). (b) a(A,B,C) Λ b(A,B,D) Λ c(C,D) Λ d(A,B,C,

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Activity example of one to one correspondence learning, Devise one activity...

Devise one activity each to help the child understand 'as many as' and 'one-to-one correspondence'. Try them out on a child/children in your neighbourhood, and record your observat

What is her commission if she sells a $359, A real estate agent makes a 1.5...

A real estate agent makes a 1.5% commission on her sales. What is her commission if she sells a $359,000 house? Multiply $359,000 by the decimal equivalent of 1.5% (0.015) to ?

Canada australia eire spain, Before independence, Bangladesh was called Cey...

Before independence, Bangladesh was called Ceylon East Pakistan Bhutan Bangalore Which of the following countries does not have a monarch as head of state? Canada Australia Eire

Three times the larger of the two numbers, If three times the larger of the...

If three times the larger of the two numbers is divided by the smaller, then the quotient is 4 and remainder is 5. If 6 times the smaller is divided by the larger, the quotient is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd