Highest common factor (hcf), Mathematics

Assignment Help:

We know that a factor is a quantity which divides the given quantity without leaving any remainder. Similar to LCM above we can find a highest common factor (HCF) of the given numbers. Let us look at its definition first. The highest common factor is a quantity obtained from the given quantities and which divides each of them without leaving a remainder. We understand this by taking an example.

Example 

Find the HCF of 49 and 63.

The factors of 49 are 1, 7 and itself. The factors of 63 are 1, 3, 7, 9, 21 and itself. The common factors are 1 and 7. The highest of these is 7, which is the HCF we require.

This is one of the methods to obtain the HCF. This method may prove tedious if we are given bigger numbers and more of them. When such quantities are given, we follow division method as shown below (this method is shown for numbers in the above example).

In this method the first step constitutes dividing the larger quantity by the smaller quantity and subtract it as shown to obtain a remainder (it is not necessary that we ought to get a remainder in all the cases). Then the divisor, 49 (in our case, 49 is the divisor and 63 the dividend, 1 the quotient and 14, the remainder) becomes the dividend and the remainder (14) which we obtained earlier becomes the divisor. We continue doing this until the remainder is 0 as shown below. The last divisor is our HCF.

                                    49) 63 (1
                                          49
                                       ---------
                                         14) 49 (3
                                               42
                                          --------
                                          7) 14 (2
                                              14
                                            -----
                                              0

That is, 7 is the HCF of the numbers 49 and 63.

Now let us consider three quantities and obtain the HCF for them.


Related Discussions:- Highest common factor (hcf)

SHOPPERS`STOP, 3. How are Indian customers visiting Shoppers’ Stop any diff...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

The low temperature in Achorage, The low temperature in Anchorage, Alaska t...

The low temperature in Anchorage, Alaska today was negative four degrees. The low temperature in Los Angeles, California was sixty-three degreees. What is the difference in the two

Modeling - nonhomogeneous systems, Under this section we're going to go bac...

Under this section we're going to go back and revisit the concept of modeling only now we're going to look at this in light of the fact as we now understand how to solve systems of

Real Analysis/Advanced Calculus (Needs to be a full proof), Both need to be...

Both need to be a full page, detailed proof. Not just a few lines of proof. (1) “Every convergent sequence contains either an increasing, or a decreasing subsequence (or possibly

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1, Solve 4 sin 2 ( t ) - 3 sin ( t /...

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1 . Solution Before solving this equation let's solve clearly unrelated equation. 4x 2 - 3x = 1  ⇒ 4x 2 - 3x -1 = ( 4x + 1) ( x

Proof of: limq -0 sinq/q = 1 trig limits, Proof of: lim q →0 sin q...

Proof of: lim q →0 sin q / q = 1 This proofs of given limit uses the Squeeze Theorem. Though, getting things set up to utilize the Squeeze Theorem can be a somewha

If a sequence is bounded and monotonic then it is convergent, Theorem ...

Theorem If {a n } is bounded and monotonic then { a n } is convergent.  Be cautious to not misuse this theorem.  It does not state that if a sequence is not bounded and/or

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd