Example of one-to-one correspondence, Mathematics

Assignment Help:

An educator placed 10 pebbles in a row and asked four-year-old Jaswant to count how many there were. She asked him to touch the pebbles .while counting them. Jaswant counted the pebbles thrice and came up with a different answer each time. What was happening was that he either left out a pebble while counting, or counted a pebble twice. His counting was something like the following one two three four five, six seven eight.

 

Why do you think Jaswant counted in this yay ?

 

Children like Jaswant have not grasped the idea that each object has to be touched only once during counting, that no object can be left untouched and that only one number name has to be recited upon touching each pebble. In other words, they have yet to understand the concept of one-to-one correspondence. To help them grasp this concept, you need to give them several experiences in setting up objects in one-to-one correspondence. This should be done before you expect them to learn counting, and while teaching them how to count.

 

As part of understanding one-to-one correspondence, children need to understand the meaning of 'many and few', 'more than', 'less than' and 'as many as'. Many everyday experiences help children understand these concepts -when they check whether there are as many plates as the number of people to be fed, when they divide up sweets equally among their friends, and so on.

 

We need to extend these experiences. Let us look at some activities for this purpose.

 

1 Lay out a row of pebbles and ask the child to make another row of as many sticks as the first one.

 

Ask the child to lay out as many leaves (or beads) as the number of' children in the group.

 

2 You can draw a set of rabbits and one of carrots. Then you could ask the child to connect each carrot with a rabbit by a line.

 

Such activities will help the child to visually understand what is involved in one-to-one correspondence.

 

Whatever the activity, we must encourage the children to talk about what they are doing. Ask children questions like "Are there as many leaves as the number of children?" or "Which are more-the leaves or the beads?" during the activities. This helps to strengthen their understanding.


Related Discussions:- Example of one-to-one correspondence

Probability, TWO PERSONS A AND B AGREE TO MEET AT A PLACE BTWEEN 11 TO 12 N...

TWO PERSONS A AND B AGREE TO MEET AT A PLACE BTWEEN 11 TO 12 NOON.  THE FIRST ONE TOARRIVE WAITS FOR 20 MIN AND THEN LEAVE. IF THE TIME OF THIR ARRIVAL BE INDEPENDET AND AT RNDOM,T

Calculate log equation, Calculate log equation: Calculate log 10 2 - ...

Calculate log equation: Calculate log 10 2 - log 10 3. Solution: Rule 2. log 10   (A/B): log 10   A - log 10   B log 10   2 - log 10   3 = log 10   (2/3) =

Determine how much more time it will take to reach the base, A man on a top...

A man on a top of a tower observes a truck at an angle of depression α where tanα = 1/√5 and sees that it is moving  towards the base of the tower. Ten minutes later, the angle of

Multiple, what number does not belong 43,47,53,59,65,67

what number does not belong 43,47,53,59,65,67

Find ways in which prizes are distributed between student, Find out the num...

Find out the number of ways in which 5 prizes can be distributed among 5 students such that  (a)   Each student may get a prize. (b)  There is no restriction to the number o

Fermats theorem, Fermat's Theorem  If f(x) has a relative extrema at x...

Fermat's Theorem  If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd