Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Find the perfect sub game nash equilibrium, Suppose that the incumbent mono...

Suppose that the incumbent monopolist, in the previous question, can decide (before anything else happens) to make an irreversible investment in extra Capacity (C), or Not (N). If

State the profit maximization problem of firm, 1. Consider two firms produc...

1. Consider two firms producing an identical product in a market where the demand is described by p = 1; 200 2Y. The corresponding cost functions are c 1 (y 1 ) = y 2 1 and c 2

Games sequential moves-game played b/w pitcher and batter, Problem: Consid...

Problem: Consider a (simplified) game played between a pitcher (who chooses between throwing a fastball or a curve) and a batter (who chooses which pitch to expect). The batter ha

Draw a table representing the prisoner.s dilemma game, 1. (a) True or False...

1. (a) True or False: If a 2x2 game has a unique pure strategy Nash Equilibrium, then both players always have dominant strategies. (b) Draw a table representing the Prisoner.s Dil

Game tree, A game tree (also referred to as the in depth form) may be a gra...

A game tree (also referred to as the in depth form) may be a graphical illustration of a sequential game. It provides data concerning the players, payoffs, strategies, and also the

Probability and expected utility, PROBABILITY AND EXPECTED UTILITY Most...

PROBABILITY AND EXPECTED UTILITY Most students know the elementary combinatorial rules for probability algebra and need only a refresher with some exam- ples. We have used card

non-credible threat , A non-credible threat may be a threat created by a p...

A non-credible threat may be a threat created by a player in a very Sequential Game which might not be within the best interest for the player to hold out. The hope is that the thr

Nash equilibrium, Consider a game in which player 1 chooses rows, player 2 ...

Consider a game in which player 1 chooses rows, player 2 chooses columns and player 3 chooses matrices. Only Player 3''s payoffs are given below. Show that D is not a best response

Dominated strategy , A strategy is dominated if, no matter what the other p...

A strategy is dominated if, no matter what the other players do, the strategy earns a player a smaller payoff than another strategy. Hence, a method is dominated if it's invariably

Game:adding numbers—lose if go to 100 or over (win at 99), GAME Adding Numb...

GAME Adding Numbers—Lose If Go to 100 or Over (Win at 99)   In the second ver- sion, two players again take turns choosing a number be- tween 1 and 10 (inclusive), and a cumulati

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd