Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Design mousetrap game board, Three flowcharts and the game board for your m...

Three flowcharts and the game board for your mousetrap game should be submitted. You can use board_design.pdf to help you lay out your board. Basically, you can use any shapes you

Trigger strategy, can i analyse all games under trigger strategies or it''s...

can i analyse all games under trigger strategies or it''s possible just for prisoners dilemma?

Variable add, In a Variable add game, the add of all player's payoffs diffe...

In a Variable add game, the add of all player's payoffs differs counting on the methods they utilize. this can be the other of a continuing add game during which all outcomes invol

Formal rules for identification, Identification may be established either ...

Identification may be established either by the examination of the specification of the structural model, or by the examination of the reduced form of the model. Traditionally

Ordinal payoffs, Ordinal payoffs are numbers representing the outcomes of a...

Ordinal payoffs are numbers representing the outcomes of a game where the worth of the numbers isn't vital, however solely the ordering of numbers. for instance, when solving for a

Find the shortest sequence of moves that is to win the game, You and an opp...

You and an opponent are seated at a table, and on the table is a square board. At each of the four corners of the board, there is a disc, each one red on one side and black on the

Backward induction, Backward induction is an iterative procedure for resolv...

Backward induction is an iterative procedure for resolving finite general form or sequential games. First, one decides the finest policy of the player who makes the last move of th

Three words, if the first three words are "the boy''s down" what are the la...

if the first three words are "the boy''s down" what are the last three words?

Totally mixed strategy, A mixed strategy during which the player assigns st...

A mixed strategy during which the player assigns strictly positive chance to each pure strategy.Morgenstern, Oskar,Coauthor of Theory of Games and Economic Behavior with John von N

Full equilibrium strategy example, (a) A player wins if she takes the tota...

(a) A player wins if she takes the total to 100 and additions of any value from 1 through 10 are allowed. Thus, if you take the sum to 89, you are guaran- teed to win; your oppone

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd