Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Beard strategy, #questi1 A, Explain how a person can be free to choose but...

#questi1 A, Explain how a person can be free to choose but his or her choices are casually determined by past event 2 B , Draw the casual tree for newcomb''s problem when Eve ca

Japanese auction, A type of sequential second worth auction, just like an E...

A type of sequential second worth auction, just like an English auction during which an auctioneer frequently raises the present worth. Participants should signal at each worth lev

Find the quantities that firm is selling – equilibrium price, 1. Two firms,...

1. Two firms, producing an identical good, engage in price competition. The cost functions are c 1 (y 1 ) = 1:17y 1 and c 2 (y 2 ) = 1:19y 2 , correspondingly. The demand functi

Computer game zenda, Computer Game Zenda This game was invented by Jame...

Computer Game Zenda This game was invented by James Andreoni and Hal Varian; see their article, "Pre-Play Contracting in the Prisoners 'Dilemma".The paper also contains some co

Single unit auction, An auction during which just one item is on the market...

An auction during which just one item is on the market for sale. Procedures embody English, Dutch, and sealed bid auctions. When multiple units are sold in one auction, the auction

Bidding ring, A set of colluding bidders. Ring participants agree to rig bi...

A set of colluding bidders. Ring participants agree to rig bids by agreeing not to bid against each other, either by avoiding the auction or by placing phony (phantom) bids.

Find a bayesian nash equilibrium, In Bontemps, Louisiana there are only two...

In Bontemps, Louisiana there are only two places to spend time: Merlotte's bar and Fangtasia. Sookie and Eric have made plans to spend Friday night together, but they never decided

Explain about the term game theory, Explain about the term Game Theory. ...

Explain about the term Game Theory. Game Theory: While the decisions of two or more firms considerably influence each others’ profits, in that case they are into a situation

Proxy bidder , A proxy bidder represents the interests of a bidder not phys...

A proxy bidder represents the interests of a bidder not physically gift at the auction. Typically, the bidder can inform his proxy of the most quantity he's willing to pay, and als

Find the perfect sub game nash equilibrium, Suppose that the incumbent mono...

Suppose that the incumbent monopolist, in the previous question, can decide (before anything else happens) to make an irreversible investment in extra Capacity (C), or Not (N). If

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd