Find a bayesian nash equilibrium, Game Theory

Assignment Help:

In Bontemps, Louisiana there are only two places to spend time: Merlotte's bar and Fangtasia. Sookie and Eric have made plans to spend Friday night together, but they never decided where they would go. Both Sookie and Eric like each other and will not enjoy their evening if it is spent alone. However, given that they spend the evening together, Eric prefers to go to Fangtasia, and Sookie prefers to go to Merlotte's. If both Eric and Sookie go to Fangtasia, Eric gets payoff 2; if Both Eric and Sookie go to Merlotte's, Sookie gets payoff 2. Eric's payoff if both he and Sookie meet at Merlotte's (his less preferred activity) depends on how much Eric likes Sookie, represented by Eric's type e, which is known only to Eric. Similarly, if Sookie and Eric meet at Fangtasia, Sookie's payoff depends on how much she likes Eric, represented by her type, s, which is known only to her. Both players believe that the other player's type is uniformly distributed between zero and one, Pr (s < x) = Pr (e < x) = x.

735_Find a Bayesian Nash equilibrium.png

(a) Suppose that Eric believes that Sookie will go to Merlotte's if her type s is less than s and will go to Fangtasia if her type is bigger than s*.

What is the probability that Sookie will go to Merlotte's? What is the probability that she will go to Fangtasia?

(b) What is Eric's expected payoff if his type is e and he goes to Fangtasia? What is his expected payoff if he is type e and goes to Merlotte's?

(c) What is Eric's best response to Sookie's strategy? (For which values of e does he go to his preferred activity? For which values of e does he go to Sookie's preferred activity?) Explain.

(d) Find a Bayesian Nash equilibrium in which Eric goes to Fangtasia if his type e is less than e*; and Sookie goes to Merlotte's if her type s is less than s*: Assume that the equilibrium is symmetric e* = s*.

(e) For what combinations of types (s; e) do Eric and Sookie spend Friday night together? What is ironic or peculiar about your answer? (Hint: describe what would happen if Sookie and Eric both like each other a lot)


Related Discussions:- Find a bayesian nash equilibrium

Pareto optimal, Named when Vilfredo Pareto, Pareto optimality may be alive ...

Named when Vilfredo Pareto, Pareto optimality may be alive of potency. An outcome of a game is Pareto optimal if there's no different outcome that produces each player a minimum of

Rollback equilibrium, Rollback equilibrium       (b) In t...

Rollback equilibrium       (b) In the rollback equilibrium, A and B vote For while C and D vote Against; this leads to payoffs of (3, 4, 3, 4). The complete equil

Pure strategy, A pure strategy defines a selected move or action that a pla...

A pure strategy defines a selected move or action that a player can follow in each potential attainable state of affairs in a very game. Such moves might not be random, or drawn fr

Maximization problem, Two individuals (i ∈ {1, 2}) work independently on a ...

Two individuals (i ∈ {1, 2}) work independently on a joint project. They each independently decide how much e ort ei they put. E ort choice has to be any real number between 0 and

Grim trigger strategy, A trigger strategy sometimes applied to repeated pri...

A trigger strategy sometimes applied to repeated prisoner's dilemmas during which a player begins by cooperating within the initial amount, and continues to cooperate till one defe

Nash equilibrium - pay off, The following is a payoff matrix for a non-coop...

The following is a payoff matrix for a non-cooperative simultaneous move game between 2 players. The payoffs are in the order (Player 1; Player 2): What is the Nash Equilibri

Paradox of identification, Discussion in the preceding section suggests tha...

Discussion in the preceding section suggests that if we want to measure a given hnction belonging to a simultaneous-equations model, the hnction must be fairly stable over the samp

Full equilibrium strategy example, (a) A player wins if she takes the tota...

(a) A player wins if she takes the total to 100 and additions of any value from 1 through 10 are allowed. Thus, if you take the sum to 89, you are guaran- teed to win; your oppone

Nature , The title of a "player" who selects from among her methods randoml...

The title of a "player" who selects from among her methods randomly, primarily based on some predetermined chance distribution, instead of strategically, primarily based on payoffs

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd