Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Strategies against hostage takers, Strategies against Hostage Takers T...

Strategies against Hostage Takers T ypical Situations Terrorists: usually have several hostages, demands are polit- ical, may be fanatics, location may be public or sec

Three words, if the first three words are "the boy''s down" what are the la...

if the first three words are "the boy''s down" what are the last three words?

Iterated dominant strategy equilibrium, What is the Iterated Dominant Strat...

What is the Iterated Dominant Strategy Equilibrium (IDSE) and associated pay-offs? Type your answer in the following form: (c,B) , (6, 4) if you think the outcome is

Bayesian game and find its bayesian equilibria, Two people are involved in ...

Two people are involved in a dispute. Person 1 does not know whether person 2 is strong or weak; she assigns probability to person 2 being strong. Person 2 is fully informed. Each

Edgeworth, Living from 1845 to 1926, Edgeworth's contributions to Economics...

Living from 1845 to 1926, Edgeworth's contributions to Economics still influence trendy game theorists. His Mathematical Psychics printed in 1881, demonstrated the notion of compet

Fixed worth auction, Not technically an auction, however a posted-price pro...

Not technically an auction, however a posted-price procedure during which the auctioneer sets a worth and sells to the primary bidder willing to pay it. The auction ends as soon as

Identifying restrictions, In many cases we are interested in only one (or a...

In many cases we are interested in only one (or a few) of the equations of the model and attempts to measure its parameters statistically without a complete knowledge of the entire

Yankee auction, Yankee auction typically implies a multiunit discriminatory...

Yankee auction typically implies a multiunit discriminatory English auction. not like a Vickrey auction where every winning bidder pays identical worth for every unit, in a very ya

Paradox of identification, Discussion in the preceding section suggests tha...

Discussion in the preceding section suggests that if we want to measure a given hnction belonging to a simultaneous-equations model, the hnction must be fairly stable over the samp

All-pay auction, A type of auction in which the highest bidder is rewarded ...

A type of auction in which the highest bidder is rewarded the object, but all bidders pay the auctioneer their bids. This differs from traditional first price auctions in which onl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd