General approach of exponential functions, Mathematics

Assignment Help:

General approach of Exponential Functions :Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential function is a function in the form,

                                       f( x ) = b x

Note that we avoid b = 1 since that would give the constant function, f( x ) = 1 .  We ignore

b= 0 as this would also give a constant function and we ignore negative values of b for the following cause. Let's, for a second, assume that we did let b to be negative and look at the given function.

                                        g( x ) = ( -4)x

Let's perform some evaluation.

g( 2)= ( -4)2 =16            g (1/2) =  ( -4)2   =√   -4 = 2i

hence, for some values of x we will obtain real numbers and for other values of x well we get complex numbers.  We desire to avoid this and thus if we require b = 0 this will not be a problem.


Related Discussions:- General approach of exponential functions

Center of mass - applications of integrals, Center of Mass - Applications o...

Center of Mass - Applications of integrals In this part we are going to find out the center of mass or centroid of a thin plate along with uniform density ρ. The center of mass

Volume, a data set has a mean of 3, a median of 4, and a mode of 5.which nu...

a data set has a mean of 3, a median of 4, and a mode of 5.which number must be in the data set-3,4,5?

John and charlie have a whole of 80 dollars he has x dollar, John and Charl...

John and Charlie have a whole of 80 dollars. John has x dollars. How much money does Charlie have? This problem translates to the expression 42 + (11 - 9) ÷ 2. Using order of o

Find out the domain of function - three dimensional space, Find out the dom...

Find out the domain of each of the following.  (a) f (x,y) = √ (x+y) (b) f (x,y) = √x+√y  (c) f (x,y) = ln (9 - x 2 - 9y 2 ) Solution (a) In this example we know

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd