General approach of exponential functions, Mathematics

Assignment Help:

General approach of Exponential Functions :Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential function is a function in the form,

                                       f( x ) = b x

Note that we avoid b = 1 since that would give the constant function, f( x ) = 1 .  We ignore

b= 0 as this would also give a constant function and we ignore negative values of b for the following cause. Let's, for a second, assume that we did let b to be negative and look at the given function.

                                        g( x ) = ( -4)x

Let's perform some evaluation.

g( 2)= ( -4)2 =16            g (1/2) =  ( -4)2   =√   -4 = 2i

hence, for some values of x we will obtain real numbers and for other values of x well we get complex numbers.  We desire to avoid this and thus if we require b = 0 this will not be a problem.


Related Discussions:- General approach of exponential functions

Constructions, Draw a line segment AB of length 4.4cm. Taking A as centre, ...

Draw a line segment AB of length 4.4cm. Taking A as centre, draw a circle of radius. 2cm and taking B as centre, draw another circle of radius 2.2cm. Construct tangents to each cir

Describe laws of cosines, Q. Describe Laws of Cosines? The law of cosin...

Q. Describe Laws of Cosines? The law of cosines is used to find the missing piece of a triangle if we are given either 1. Two sides and the included angle (SAS) or  2. All t

Factoring quadratic polynomials, Primary, note that quadratic is another te...

Primary, note that quadratic is another term for second degree polynomial. Thus we know that the largest exponent into a quadratic polynomial will be a2. In these problems we will

Two consecutive integers is 15 find out the larger integer, If the differen...

If the difference among the squares of two consecutive integers is 15 find out the larger integer. Let x = the lesser integer and let x + 1 = the greater integer. The sentence,

Evalute right-hand limit, Evaluate following limits. Solution ...

Evaluate following limits. Solution Let's begin with the right-hand limit.  For this limit we have, x > 4  ⇒          4 - x 3   = 0      also, 4 - x → 0  as x → 4

Find out least common multiple, Find out Least Common Multiple? The sma...

Find out Least Common Multiple? The smallest number that is a common multiple of two numbers (that is, both numbers share the same multiple) is called the least common multiple

What is the limit of sin (1/x) when x tends to zero?, As x tends to zero th...

As x tends to zero the value of 1/x tends to either ∞ or -∞. In this situation we will not be sure about the exact value of 1/x. As a result we will not be sure about the exact/app

Find inverse laplace transform, Question: Find Inverse Laplace Transfor...

Question: Find Inverse Laplace Transform of the following (a) F(s) = (s-1)/(2s 2 +8s+13)     (b) F(s)= e -4s /(s 2 +1) + (1/s 3 )

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd