Fundamental theorem of integral facts formulasproperties, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a,b] so,

g(x) = ax f(t) dt

is continuous on [a,b] and this is differentiable on (a, b) and as,

g′(x) = f(x)

 Proof

Assume that x and x + h are in (a, b).  We then get,

g(x + h) - g(x) = ax+h f(t) dt - ax f(t) dt

Here, by using Property 5 of the Integral Properties we can rewrite the very first integral and then make a little simplification as given below.

g(x + h) - g(x) = (ax f(t) dt  + ax+h f(t) dt) - ax f(t) dt

= ax+h f(t) dt

At last suppose that   h ≠0 and we find,

(g(x + h) - g(x))/h = (1/h) ax+h f(t) dt                                      (1)

Let's here suppose that h > 0 and as we are even assuming that x + h are in (a, b) we know that f(x) is continuous on [x, x + h]and therefore by the  Extreme Value Theorem we get that there are numbers c and d in [x, x + h] thus f(c) = m is the absolute minimum of f(x) in [x, x + h] and that f(d) = M is the absolute maximum of f(x) in [x, x + h].

Therefore, by Property 10 of the Integral Properties we then get,

mh < ax+h f(t) dt < Mh

or, f(c)h < ax+h f(t) dt < f(d)h

Then divide both sides of this with h to have,

f(c) < (1/h)ax+h f(t) dt < f(d)

and now use (1) to have,

f(c) < (((g(x + h) - g(x))/h)dt < f(d)                             (2)

Subsequently, if h < 0 we can go through similar argument above except we will be working on [x + h, x] to arrive at exactly similar inequality above. Conversely, (2) is true provided h ≠0.

Then here, if we take h → 0 we also have c → x and d → x since both c and d are among x and x + h. it means that we have the subsequent two limits.

limh→0 f(c) = limc→xf(c)                                     limh→0 f(d) = limd→xf(x)                                   

The Squeeze Theorem here tells us,

limh→0 =(((g(x + h) - g(x))/h) = f(x)

although the left side of this is exactly the definition of the derivative of g(x) and therefore we have, g′(x) = f(x)

Therefore, we've demonstrated that g(x) is differentiable on (a, b).

Here, the theorem at the end of the Definition of the Derivative section give us that g(x) is also continuous on (a, b). At last, if we take x = a or x = b we can go through a same argument we used to find (3) using one-sided limits to have similar result and therefore the theorem at the end of the Definition of the Derivative section will also lead us that g(x) is continuous at x = a or x = b and therefore really g (x) is also continuous on [a, b].


Related Discussions:- Fundamental theorem of integral facts formulasproperties

Case study, considring the concept of product life cycle,where would you pu...

considring the concept of product life cycle,where would you put viedo games in thier life cycle?

Initial value problem, An IVP or Initial Value Problem is a differential eq...

An IVP or Initial Value Problem is a differential equation with an appropriate number of initial conditions. Illustration 3 : The subsequent is an IVP. 4x 2 y'' + 12y' +

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Determine the probability - mean and standard deviation, The scores of stud...

The scores of students taking the ACT college entrance examination are normally distributed with a mean m = 20.1 and a standard deviation s = 5.8. A single student is selected a

Find out ratio, the sides of a right angle triangle are a,a+d,a+2d with a a...

the sides of a right angle triangle are a,a+d,a+2d with a and d both positive.the ratio of a to d  a)1:2 b)1:3 c)3:1 d)5:2 answer is (c) i.e. 3:1 Solution: Applying

Product moment coefficient (r), Product Moment Coefficient (r) ...

Product Moment Coefficient (r) This gives an indication of the strength of the linear relationship among two variables.                                     N

Convergence, Assume that (xn) is a sequence of real numbers and that a, b €...

Assume that (xn) is a sequence of real numbers and that a, b € R with a is not eaqual to 0. (a) If (x n ) converges to x, show that (|ax n + b|) converges to |ax + b|. (b) Give

ConnectEd, How do I increase and decrease tax and sales

How do I increase and decrease tax and sales

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd