Fundamental theorem of integral facts formulasproperties, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a,b] so,

g(x) = ax f(t) dt

is continuous on [a,b] and this is differentiable on (a, b) and as,

g′(x) = f(x)

 Proof

Assume that x and x + h are in (a, b).  We then get,

g(x + h) - g(x) = ax+h f(t) dt - ax f(t) dt

Here, by using Property 5 of the Integral Properties we can rewrite the very first integral and then make a little simplification as given below.

g(x + h) - g(x) = (ax f(t) dt  + ax+h f(t) dt) - ax f(t) dt

= ax+h f(t) dt

At last suppose that   h ≠0 and we find,

(g(x + h) - g(x))/h = (1/h) ax+h f(t) dt                                      (1)

Let's here suppose that h > 0 and as we are even assuming that x + h are in (a, b) we know that f(x) is continuous on [x, x + h]and therefore by the  Extreme Value Theorem we get that there are numbers c and d in [x, x + h] thus f(c) = m is the absolute minimum of f(x) in [x, x + h] and that f(d) = M is the absolute maximum of f(x) in [x, x + h].

Therefore, by Property 10 of the Integral Properties we then get,

mh < ax+h f(t) dt < Mh

or, f(c)h < ax+h f(t) dt < f(d)h

Then divide both sides of this with h to have,

f(c) < (1/h)ax+h f(t) dt < f(d)

and now use (1) to have,

f(c) < (((g(x + h) - g(x))/h)dt < f(d)                             (2)

Subsequently, if h < 0 we can go through similar argument above except we will be working on [x + h, x] to arrive at exactly similar inequality above. Conversely, (2) is true provided h ≠0.

Then here, if we take h → 0 we also have c → x and d → x since both c and d are among x and x + h. it means that we have the subsequent two limits.

limh→0 f(c) = limc→xf(c)                                     limh→0 f(d) = limd→xf(x)                                   

The Squeeze Theorem here tells us,

limh→0 =(((g(x + h) - g(x))/h) = f(x)

although the left side of this is exactly the definition of the derivative of g(x) and therefore we have, g′(x) = f(x)

Therefore, we've demonstrated that g(x) is differentiable on (a, b).

Here, the theorem at the end of the Definition of the Derivative section give us that g(x) is also continuous on (a, b). At last, if we take x = a or x = b we can go through a same argument we used to find (3) using one-sided limits to have similar result and therefore the theorem at the end of the Definition of the Derivative section will also lead us that g(x) is continuous at x = a or x = b and therefore really g (x) is also continuous on [a, b].


Related Discussions:- Fundamental theorem of integral facts formulasproperties

Logarithmic form and exponential form, Logarithmic form and exponential for...

Logarithmic form and exponential form ; We'll begin with b = 0 , b ≠ 1. Then we have y= log b x          is equivalent to                  x= b y The first one is called

Probability - applications of integrals, Probability - Applications of inte...

Probability - Applications of integrals In this final application of integrals that we'll be looking at we are going to look at probability.  Previous to actually getting into

Customer arithmetics, what is $6500 jamaican dollars in european money if ...

what is $6500 jamaican dollars in european money if jamaican $160.13 = 1 european money

Trigonometry, I am really stuck on this topic and other topics its extremel...

I am really stuck on this topic and other topics its extremely difficult and I dont know what to do Im stressing out help me please.

#algebra 2 .., encoded with the matrix -3 -7 and 4 9. what lights up a socc...

encoded with the matrix -3 -7 and 4 9. what lights up a soccer stadium? ecoded message: {-3 - 7} {3 2 } {3 6} {57 127} {52 127} {77 173} {23 51)

Variation and proportion, i am not getting what miss has taught us please w...

i am not getting what miss has taught us please will you will help me in my studies

Steps for alternating series test, Steps for Alternating Series Test Su...

Steps for Alternating Series Test Suppose that we have a series ∑a n and either a n = (-1) n b n or a n = (-1) n+1 b n where b n > 0 for all n.  Then if,   1.

What is the volume of the frustum, If the areas of the circular bases of a ...

If the areas of the circular bases of a frustum of a cone are 4cm 2 and 9cm 2 respectively and the height of the frustum is 12cm. What is the volume of the frustum. (Ans:44cm 2 )

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd