Fundamental theorem of integral facts formulasproperties, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a,b] so,

g(x) = ax f(t) dt

is continuous on [a,b] and this is differentiable on (a, b) and as,

g′(x) = f(x)

 Proof

Assume that x and x + h are in (a, b).  We then get,

g(x + h) - g(x) = ax+h f(t) dt - ax f(t) dt

Here, by using Property 5 of the Integral Properties we can rewrite the very first integral and then make a little simplification as given below.

g(x + h) - g(x) = (ax f(t) dt  + ax+h f(t) dt) - ax f(t) dt

= ax+h f(t) dt

At last suppose that   h ≠0 and we find,

(g(x + h) - g(x))/h = (1/h) ax+h f(t) dt                                      (1)

Let's here suppose that h > 0 and as we are even assuming that x + h are in (a, b) we know that f(x) is continuous on [x, x + h]and therefore by the  Extreme Value Theorem we get that there are numbers c and d in [x, x + h] thus f(c) = m is the absolute minimum of f(x) in [x, x + h] and that f(d) = M is the absolute maximum of f(x) in [x, x + h].

Therefore, by Property 10 of the Integral Properties we then get,

mh < ax+h f(t) dt < Mh

or, f(c)h < ax+h f(t) dt < f(d)h

Then divide both sides of this with h to have,

f(c) < (1/h)ax+h f(t) dt < f(d)

and now use (1) to have,

f(c) < (((g(x + h) - g(x))/h)dt < f(d)                             (2)

Subsequently, if h < 0 we can go through similar argument above except we will be working on [x + h, x] to arrive at exactly similar inequality above. Conversely, (2) is true provided h ≠0.

Then here, if we take h → 0 we also have c → x and d → x since both c and d are among x and x + h. it means that we have the subsequent two limits.

limh→0 f(c) = limc→xf(c)                                     limh→0 f(d) = limd→xf(x)                                   

The Squeeze Theorem here tells us,

limh→0 =(((g(x + h) - g(x))/h) = f(x)

although the left side of this is exactly the definition of the derivative of g(x) and therefore we have, g′(x) = f(x)

Therefore, we've demonstrated that g(x) is differentiable on (a, b).

Here, the theorem at the end of the Definition of the Derivative section give us that g(x) is also continuous on (a, b). At last, if we take x = a or x = b we can go through a same argument we used to find (3) using one-sided limits to have similar result and therefore the theorem at the end of the Definition of the Derivative section will also lead us that g(x) is continuous at x = a or x = b and therefore really g (x) is also continuous on [a, b].


Related Discussions:- Fundamental theorem of integral facts formulasproperties

Nemeric patterns, Kelli calls her grandmother every month. Every other mont...

Kelli calls her grandmother every month. Every other month,Kelli also calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by the end

Fundamentals of math, When there are 4 dots how many chords are they

When there are 4 dots how many chords are they

Negative and positives, in 1970 a record 1.5 of rain fell in one minute at ...

in 1970 a record 1.5 of rain fell in one minute at Basse Terre, guadaloupe in the caribbnean.at this rate, how much rain fell in 3 seconds or 0.05 of a minutes?

Roof-finding using steffensen''s method, write a computer program that will...

write a computer program that will implement Steffensen''s method.

Help, how long would it take if a submarine if it goes 3 feet per minute to...

how long would it take if a submarine if it goes 3 feet per minute to get to 20000 answer

Example of binomial distribution, Example:  Joanne is given a four-question...

Example:  Joanne is given a four-question multiple-choice quiz.  She hasnt studied the material to be quizzed, so she decides to answer the questions by randomly guessing the answe

Formula to know the area of fan will wrap, Aaron is installing a ceiling fa...

Aaron is installing a ceiling fan in his bedroom. Once the fan is in motion, he requires to know the area the fan will wrap. What formula will he use? The area of a circle is π

Square root., i dont get these questions they are hard for me

i dont get these questions they are hard for me

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd