Fundamental theorem of integral facts formulasproperties, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a,b] so,

g(x) = ax f(t) dt

is continuous on [a,b] and this is differentiable on (a, b) and as,

g′(x) = f(x)

 Proof

Assume that x and x + h are in (a, b).  We then get,

g(x + h) - g(x) = ax+h f(t) dt - ax f(t) dt

Here, by using Property 5 of the Integral Properties we can rewrite the very first integral and then make a little simplification as given below.

g(x + h) - g(x) = (ax f(t) dt  + ax+h f(t) dt) - ax f(t) dt

= ax+h f(t) dt

At last suppose that   h ≠0 and we find,

(g(x + h) - g(x))/h = (1/h) ax+h f(t) dt                                      (1)

Let's here suppose that h > 0 and as we are even assuming that x + h are in (a, b) we know that f(x) is continuous on [x, x + h]and therefore by the  Extreme Value Theorem we get that there are numbers c and d in [x, x + h] thus f(c) = m is the absolute minimum of f(x) in [x, x + h] and that f(d) = M is the absolute maximum of f(x) in [x, x + h].

Therefore, by Property 10 of the Integral Properties we then get,

mh < ax+h f(t) dt < Mh

or, f(c)h < ax+h f(t) dt < f(d)h

Then divide both sides of this with h to have,

f(c) < (1/h)ax+h f(t) dt < f(d)

and now use (1) to have,

f(c) < (((g(x + h) - g(x))/h)dt < f(d)                             (2)

Subsequently, if h < 0 we can go through similar argument above except we will be working on [x + h, x] to arrive at exactly similar inequality above. Conversely, (2) is true provided h ≠0.

Then here, if we take h → 0 we also have c → x and d → x since both c and d are among x and x + h. it means that we have the subsequent two limits.

limh→0 f(c) = limc→xf(c)                                     limh→0 f(d) = limd→xf(x)                                   

The Squeeze Theorem here tells us,

limh→0 =(((g(x + h) - g(x))/h) = f(x)

although the left side of this is exactly the definition of the derivative of g(x) and therefore we have, g′(x) = f(x)

Therefore, we've demonstrated that g(x) is differentiable on (a, b).

Here, the theorem at the end of the Definition of the Derivative section give us that g(x) is also continuous on (a, b). At last, if we take x = a or x = b we can go through a same argument we used to find (3) using one-sided limits to have similar result and therefore the theorem at the end of the Definition of the Derivative section will also lead us that g(x) is continuous at x = a or x = b and therefore really g (x) is also continuous on [a, b].


Related Discussions:- Fundamental theorem of integral facts formulasproperties

Prove that ac2 =ab2 + bc2+2bcxbd, If ABC is an obtuse angled triangle, obtu...

If ABC is an obtuse angled triangle, obtuse angled at B and if AD⊥CB Prove that AC 2 =AB 2 + BC 2 +2BCxBD Ans:    AC 2 = AD 2 + CD 2 = AD 2 + (BC + BD) 2 = A

Concept, uses of maths concept

uses of maths concept

Trigonometry, sin^2alpha *sec^2beta +tan^2 beta *cos^2alpha=sin^2alpha+tan^...

sin^2alpha *sec^2beta +tan^2 beta *cos^2alpha=sin^2alpha+tan^2 beta

How many miles will he jog in 30 minutes, Mike can jog 6.5 miles per hour. ...

Mike can jog 6.5 miles per hour. At this rate, how many miles will he jog in 30 minutes? Thirty minutes is half an hour. Thus, divide the number of miles Mike can jog in one ho

Proof integral function, Proof of: if f(x) > g(x) for a x b th...

Proof of: if f(x) > g(x) for a x b then a ∫ b  f(x) dx > g(x). Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Prop

Determine the critical points, Assume that the amount of money in a bank ac...

Assume that the amount of money in a bank account after t years is specified by, Find out the minimum & maximum amount of money in the account throughout the first 10 years

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd