Fundamental theorem of integral facts formulasproperties, Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part I

If f(x) is continuous on [a,b] so,

g(x) = ax f(t) dt

is continuous on [a,b] and this is differentiable on (a, b) and as,

g′(x) = f(x)

 Proof

Assume that x and x + h are in (a, b).  We then get,

g(x + h) - g(x) = ax+h f(t) dt - ax f(t) dt

Here, by using Property 5 of the Integral Properties we can rewrite the very first integral and then make a little simplification as given below.

g(x + h) - g(x) = (ax f(t) dt  + ax+h f(t) dt) - ax f(t) dt

= ax+h f(t) dt

At last suppose that   h ≠0 and we find,

(g(x + h) - g(x))/h = (1/h) ax+h f(t) dt                                      (1)

Let's here suppose that h > 0 and as we are even assuming that x + h are in (a, b) we know that f(x) is continuous on [x, x + h]and therefore by the  Extreme Value Theorem we get that there are numbers c and d in [x, x + h] thus f(c) = m is the absolute minimum of f(x) in [x, x + h] and that f(d) = M is the absolute maximum of f(x) in [x, x + h].

Therefore, by Property 10 of the Integral Properties we then get,

mh < ax+h f(t) dt < Mh

or, f(c)h < ax+h f(t) dt < f(d)h

Then divide both sides of this with h to have,

f(c) < (1/h)ax+h f(t) dt < f(d)

and now use (1) to have,

f(c) < (((g(x + h) - g(x))/h)dt < f(d)                             (2)

Subsequently, if h < 0 we can go through similar argument above except we will be working on [x + h, x] to arrive at exactly similar inequality above. Conversely, (2) is true provided h ≠0.

Then here, if we take h → 0 we also have c → x and d → x since both c and d are among x and x + h. it means that we have the subsequent two limits.

limh→0 f(c) = limc→xf(c)                                     limh→0 f(d) = limd→xf(x)                                   

The Squeeze Theorem here tells us,

limh→0 =(((g(x + h) - g(x))/h) = f(x)

although the left side of this is exactly the definition of the derivative of g(x) and therefore we have, g′(x) = f(x)

Therefore, we've demonstrated that g(x) is differentiable on (a, b).

Here, the theorem at the end of the Definition of the Derivative section give us that g(x) is also continuous on (a, b). At last, if we take x = a or x = b we can go through a same argument we used to find (3) using one-sided limits to have similar result and therefore the theorem at the end of the Definition of the Derivative section will also lead us that g(x) is continuous at x = a or x = b and therefore really g (x) is also continuous on [a, b].


Related Discussions:- Fundamental theorem of integral facts formulasproperties

Word problem, A computer is programmed to scan the digits of the counting n...

A computer is programmed to scan the digits of the counting numbers.For example,if it scans 1 2 3 4 5 6 7 8 9 10 11 12 13 then it has scanned 17 digits all together. If the comput

Find the time it takes to slide down, The time in seconds that it takes for...

The time in seconds that it takes for a sled to slide down a hillside inclined at and angle θ is where d is the length of the slope in metres. Find the time it takes to sli

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Toni tiger, Application Practice Answer the following questions. Use Equat...

Application Practice Answer the following questions. Use Equation Editor to write mathematical expressions and equations. First, save this file to your hard drive by selecting Sav

Quadric surfaces, identify 4 sketch the quadric surfaces

identify 4 sketch the quadric surfaces

If a differential equation does have a solution can we find?, It may seem l...

It may seem like an odd question to ask and until now the answer is not all the time yes. Just as we identify that a solution to a differential equations exists does not implies th

Find the solution to initial value problem, Illustration:   Find the soluti...

Illustration:   Find the solution to the subsequent IVP. ty' + 2y = t 2 - t + 1,      y(1) = ½ Solution : Initially divide via the t to find the differential equation in

DECIMALS, the mass of a container is 5.81kg when full with sugar .the mass ...

the mass of a container is 5.81kg when full with sugar .the mass of container is 3.8kg when 3/8 of the sugar is removed.what is the mass of empty container

Time and Work, A and B can finish a piece of work in 16 days and 12 days re...

A and B can finish a piece of work in 16 days and 12 days respectively.A started a work and worked at it for 2 days.He was then joined by B.Find the total time taken to finish the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd