Free - damped vibrations, Mathematics

Assignment Help:

We are until now going to suppose that there will be no external forces acting on the system, along with the exception of damping obviously. Under this case the differential equation will be as

mu′′ + g u′ + ku = 0

Here m, g, and k are all positive constants. By solving this for the roots of the characteristic equation we determine the following,

r1,2 = (- g+√( g2 - 4mk))/2m

We will have three cases now.

1.      g2 - 4mk = 0

Under this case we will find a double root out of the characteristic equation and the displacement at any time t will be as,

u(t) = c1e-((gt)/(2m)) = c2te-((gt)/(2m))

Make sure that as t → ∞ the displacement will approach zero and therefore the damping under this case will do what it's supposed to do.

This case is termed as critical damping and will occur when the damping coefficient is,

g2 - 4mk = 0

g2 = 4mk

g = 2√(mk) = gCR

The value of the damping coefficient that gives critical damping is called the critical damping coefficient and denoted by ?CR.

2.      g2 - 4mk > 0

Under this case let's rewrite the roots a little.

860_Free - Damped Vibrations.png

Also see that from our initial assumption which we have,

g2 > 4 mk

1 > (4mk)/ g2

By using this we can notice that the fraction in the square root above is less than one. So if the quantity under the square root is less than one, it implies that the square root of this quantity is also going to be less than one. Conversely,

√(1 - (4mk)/ g2) < 1

Why is this significant? Well, the quantity in the parenthesis is now one minus/plus a number which is less than one. It means that the quantity in the parenthesis is guaranteed to be positive and therefore the two roots under this case are guaranteed to be negative.  Thus the displacement at any time t is,

1908_Free - Damped Vibrations1.png

And will approach zero as t → ∞. Therefore, once again the damper does what this is supposed to do.

This case will arise when,

g2 > 4mk

g2  > 2√(mk)

g > gCR

And this is termed as over damping.

3.      g 2 - 4mk < 0

Under this case we will find complex roots out of the characteristic equation.

2128_Free - Damped Vibrations2.png

Here the real part is guaranteed to be negative and therefore the displacement is as

U(t) = c1elt cos(µt) + c2 elt sin(µt)

= elt (c1 cos(µt) + c2 sin(µt))

= R elt(cos(ut - d))

Make sure that we reduced the sine and cosine down to a single cosine under this case as we did in the undamped case.  Also, as l < 0 the displacement will move toward zero as t → ∞ and the damper will also work as it's assumed to in this case.

 We will find this case will arise when,

g2 < 4mk

g2  < 2√(mk)

g < gCR

This is termed as under damping.


Related Discussions:- Free - damped vibrations

What kinds classroom activities help children to learn maths, What kinds of...

What kinds of classroom activities can you think of for helping children to make groups of 5 and 10? Once they have enough practice with such activities, children can be helped

Find the equation of circle concentric – coordinate geometry, 1. A point P(...

1. A point P(a,b) becomes (3,c) after reflection in x - axis, and (d,6) after reflection in the origin. Show that a = 3, b = - 6, c = 6, d = 2 2. If the pair of lines ax² + 2pxy

Algebraic models, Establish appropriate algebraic models for each of the fo...

Establish appropriate algebraic models for each of the following sets of data. You can use technology to assist. Plot them on grids and demonstrate how you have established each mo

Which of the subsequent represents the cost y of phone call, A telephone co...

A telephone company charges $.35 for the first minute of a phone call and $.15 for each additional minute of the call. Which of the subsequent represents the cost y of a phone call

Differential equation - variation of parameters, Variation of Parameters ...

Variation of Parameters Notice there the differential equation, y′′ + q (t) y′ + r (t) y = g (t) Suppose that y 1 (t) and y 2 (t) are a fundamental set of solutions for

My daugther needs help, my daughter is having trouble with math she cant un...

my daughter is having trouble with math she cant understand why please help us

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Derivative, Uses of derivative in daily life with examples.

Uses of derivative in daily life with examples.

Exponents, how to solve this question:(2x)5*(2x)-4*(2x)-3*(2x)6

how to solve this question:(2x)5*(2x)-4*(2x)-3*(2x)6

Aggregation and augmentation, Previously discussed how important it is to e...

Previously discussed how important it is to expose children to a variety of verbal problems involving the concept that they are trying to learn. Children attach meaning to the abst

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd