Free - damped vibrations, Mathematics

Assignment Help:

We are until now going to suppose that there will be no external forces acting on the system, along with the exception of damping obviously. Under this case the differential equation will be as

mu′′ + g u′ + ku = 0

Here m, g, and k are all positive constants. By solving this for the roots of the characteristic equation we determine the following,

r1,2 = (- g+√( g2 - 4mk))/2m

We will have three cases now.

1.      g2 - 4mk = 0

Under this case we will find a double root out of the characteristic equation and the displacement at any time t will be as,

u(t) = c1e-((gt)/(2m)) = c2te-((gt)/(2m))

Make sure that as t → ∞ the displacement will approach zero and therefore the damping under this case will do what it's supposed to do.

This case is termed as critical damping and will occur when the damping coefficient is,

g2 - 4mk = 0

g2 = 4mk

g = 2√(mk) = gCR

The value of the damping coefficient that gives critical damping is called the critical damping coefficient and denoted by ?CR.

2.      g2 - 4mk > 0

Under this case let's rewrite the roots a little.

860_Free - Damped Vibrations.png

Also see that from our initial assumption which we have,

g2 > 4 mk

1 > (4mk)/ g2

By using this we can notice that the fraction in the square root above is less than one. So if the quantity under the square root is less than one, it implies that the square root of this quantity is also going to be less than one. Conversely,

√(1 - (4mk)/ g2) < 1

Why is this significant? Well, the quantity in the parenthesis is now one minus/plus a number which is less than one. It means that the quantity in the parenthesis is guaranteed to be positive and therefore the two roots under this case are guaranteed to be negative.  Thus the displacement at any time t is,

1908_Free - Damped Vibrations1.png

And will approach zero as t → ∞. Therefore, once again the damper does what this is supposed to do.

This case will arise when,

g2 > 4mk

g2  > 2√(mk)

g > gCR

And this is termed as over damping.

3.      g 2 - 4mk < 0

Under this case we will find complex roots out of the characteristic equation.

2128_Free - Damped Vibrations2.png

Here the real part is guaranteed to be negative and therefore the displacement is as

U(t) = c1elt cos(µt) + c2 elt sin(µt)

= elt (c1 cos(µt) + c2 sin(µt))

= R elt(cos(ut - d))

Make sure that we reduced the sine and cosine down to a single cosine under this case as we did in the undamped case.  Also, as l < 0 the displacement will move toward zero as t → ∞ and the damper will also work as it's assumed to in this case.

 We will find this case will arise when,

g2 < 4mk

g2  < 2√(mk)

g < gCR

This is termed as under damping.


Related Discussions:- Free - damped vibrations

Real exponents, It is a fairly short section.  It's real purpose is to ackn...

It is a fairly short section.  It's real purpose is to acknowledge that the exponent properties work for any exponent.  We've already used them on integer and rational exponents al

Compute the derivative, Write an octave program that will take a set of poi...

Write an octave program that will take a set of points {x k , f k } representing a function and compute the derivative at the same points x k using 1. 2-point forward di erence

Example of integration by parts - integration techniques, Example of Integr...

Example of Integration by Parts - Integration techniques Illustration1:  Evaluate the following integral. ∫ xe 6x dx Solution : Thus, on some level, the difficulty

Math, i need help in math

i need help in math

Example of intersection, Can anybody provide me the solution of the followi...

Can anybody provide me the solution of the following example? You are specified the universal set as T = {1, 2, 3, 4, 5, 6, 7, 8} And the given subjects of the universal s

Proof of the derivative of a constant, Proof of the Derivative of a Constan...

Proof of the Derivative of a Constant : d(c)/dx = 0 It is very easy to prove by using the definition of the derivative therefore define, f(x) = c and the utilize the definiti

Jordan needs help, carlie is now fivetimes as old as henry. in nine years ...

carlie is now fivetimes as old as henry. in nine years her age will be twice henry''s age then. how old is carly now

Show that cos12+cos60+cos84=cos24+cos48 , L.H.S. =cos 12+cos 60+cos 84 =c...

L.H.S. =cos 12+cos 60+cos 84 =cos 12+(cos 84+cos 60) =cos 12+2.cos 72 . cos 12 =(1+2sin 18)cos 12 =(1+2.(√5 -1)/4)cos 12 =(1+.(√5 -1)/2)cos 12 =(√5 +1)/2.cos 12   R.H.S =c

Diferential equations, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd