Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Find out the surface area of the solid acquired by rotating y = √ (9-x2), - 2 < x < 2 about the x-axis.
Solution
The formula that we'll be using here is,
S = ∫ 2Πyds
As we are rotating about the x-axis and we will make use of the first ds in this case since our function is in the correct form for this reason ds and we won't gain anything by solving it for x. Let us first get the derivative and the root taken care of.
Dy/dx = ½ (9-x2)- ½ (-2x)
= - x / (9-x2)½
√(1+ (dy/dx)2)
= √(1+ x2 / (9-x2))
= √(9 / 9-x2)
= 3/ √(9-x2)
Here's the integral for the surface area,
S = ∫2-2 2Πy (3/ √(9-x2)) dx
Though there is a problem. The meaning of dx here is that we shouldn't have any y's in the integral. Thus, before evaluating the integral we'll require to substitute in for y as well. After that the surface area is,
1. Consider the model Y t = β 0 + β 1 X t + ε t , where t = 1,..., n. If the errors ε t are not correlated, then the OLS estimates of β 0 and β
If α & ß are the zeroes of the polynomial 2x 2 - 4x + 5, then find the value of a.α 2 + ß 2 b. 1/ α + 1/ ß c. (α - ß) 2 d. 1/α 2 + 1/ß 2 e. α 3 + ß 3 (Ans:-1, 4/5 ,-6,
The sum of -4 and a number is equal to -48. What is the number? Let x = the number. Because sum is a key word for addition, the equation is -4 + x = -48. Add 4 to both sides o
Q. Subtraction Involving Negative Numbers? In order to subtract positive and negative numbers, you need to be aware of the Rule for Subtraction. This rule states that subtracti
how to find basic intrest problems
Round 14.851 to the nearest tenth? The tenths place is the ?rst number to the right of the decimal. Here the number 8 is in the tenths place. To decide whether to round up or
if .77x + x = 8966.60, what is the value of x?
HOW DO WE CAN SOLVE SIMPLIFY?
Find all the real solutions to cubic equation x^3 + 4x^2 - 10 =0. Use the cubic equation x^3 + 4x^2 - 10 =0 and perform the following call to the bisection method [0, 1, 30] Use
Evaluate the convergence of the algorithms: From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd