Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
FET operation:
Figure: I-V characteristics and output plot of a JFET n-channel transistor.
The FET manages the flow of electrons (or electron holes) from the source to drain by influencing the size and shape of a "conductive channel" created and affected by voltage (or lack of voltage) applied across the gate and source terminals (For easiness of discussion, this assumes body and source are related). This conductive channel is the "stream" by which electrons flow to drain from source.
A negative gate-to-source voltage causes a depletion region to expand in width and encroach on the channel from the sides, narrowing the channel, in an n-channel depletion-mode device. If the depletion region expands to fully close to channel, the resistance of the channel from source to drain turns large, and the FET is efficiently turned off like a switch. Similarly a positive gate-to-source voltage raises the channel size and permits electrons to flow easily.
On the other hand, in an n-channel enhancement-mode device, a positive gate-to-source voltage is essential to create a conductive channel, because one does not exist naturally within the transistor. The positive voltage that is attracts free-floating electrons within the body towards the gate, creating a conductive channel. But first, sufficient electrons must be attracted near the gate to counter the dopant ions added to the body of the FET; this makes a region free of mobile carriers called a depletion region, and the phenomenon is considered to as the threshold voltage of the FET. Further gate-to-source voltage rises will attract even much more electrons towards the gate that are able to create a conductive channel from source to drain; this process is termed as inversion.
Voltage divider bias: The voltage divider is made by using external resistors R 1 and R 2 . The voltage beyond than R 2 forward biases the emitter junction. Via prop
Q. What do you mean by Conductors and Insulators? In order to put charge in motion so that it becomes an electric current, one must provide a path through which it can flow eas
A 150 km long, 3-phase, 400 kV overhead line is used to transmit 1800 MW to a distribution area at 0.9 power factor lagging. The line parameters per phase and per unit length in st
There are three types of buses. Address bus: This is used to carry the Address to the memory to get either Instruction or Data. Data bus : This is used to take the Data from
Explain protected mode addressing. This addressing permits access to data and programs located as the first 1M byte of memory, with in the first 1M byte of memory. Addressing
Explain current divider rule Current flow through at every resistor that connected by parallel can be find by using current divider rules (CDR).
Note transducers convert a physical quantity from one form to another. The case below illustrates a typical moving coil meter that converts a current into a mechanical a
what is FPGA ..
Q. Consider the non inverting amplifier. Let R i = 1k and R f = 2k. Let the op amp be ideal, except that its output cannot exceed ±12 V at a current of ±10 mA. (a) Find the
Normalizing
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd