Moving coil transducers, Electrical Engineering

Assignment Help:

Note transducers  convert a physical quantity from one  form to another.  The case below illustrates a typical moving coil meter   that   converts   a   current into a mechanical angular displacement

1230_Moving coil transducers.png

The coil is wound on an aluminium frame  (aluminium is non-magnetic, hence µ~µ0  )supported on two pivots top and bottom. The frame rotates over a soft iron core  (with a v.high µ), that is fixed. It does not rotate with the coil because the coil and frame should have minimum inertia for a rapid response to transient currents. Magnets either side, have shaped pole pieces to ensure that the coil experiences the field in a constant air gap regardless of the angle of the coil on the core. To ensure maximum field strength for a given permanent magnet strength, the two air gaps (one either side of the coil) are the only air gaps in the magnetic circuit. If a current flows in the coil, the coil experiences a torque due to the Lorenz force between the current carrying vertical edges of the coil and the magnetic field. This torque causes a deflection of the coil against a restraining spring so the final equilibrium position of the coil is a measure of the torque being experienced by the coil, which in turn is proportional to the current flowing in it.

A needle attached to the moving coil rotates along a scale calibrated to read current, voltage etc. In the case of a voltmeter, the coil has a large number of turns so that a reasonable torque is produced with very little current - i.e. the meter has a high resistance and draws very little current. In contrast, a current meter will have relatively few turns of large diameter, so the torque is produced by a relatively large current. It represents very little resistance and drops very little voltage.  Because of the shaped pole pieces, the field is radial and constant across the air gap. Hence the force experienced by each vertical edge of the coil is:


F=B.i.L.N

 

where   B = flux density
  i = current flowing in the coil
  l = length of the coil edge
N = number of turns on the coil.

If the coil is d metres wide, the total torque produced on the coil is:

T=2.B.i.L/N.d/2=B.i.N.A

 

If the spring has a spring constant c Newton.metres/radian (hence the spring constant is the torque required to produce an angular movement of one radian), then the current in the coil in equilibrium is :

i=c. O/B.A.N

 

Thus i and θ have a linear relationship and the sensitivity of an ammeter is expressed as:

O/i=B.A.N/c

 

For a voltmeter the sensitivity is expressed in terms of θ and the applied voltage. This may be related to the coil resistance R by

v= i.R , so

 

O/v=B.A.N/c.R

 

Moving coil meters can (but not always)  have high sensitivity, uniform scale and low power consumption. However, to meet all these requirements they will be expensive, especially if high sensitivity is required, (N high, c low) and will not be very robust. They are used for DC only. (AC meters of this construction are readily available, but these convert AC into DC first, using a rectifier).

 

 

 

 

 

 

 


Related Discussions:- Moving coil transducers

FRACTIONAL PID TUING USING GA FOR LOAD FREQUENCY CONTROL, Iam doing my proj...

Iam doing my project on LFC using tuned FOPID.I have considered a two area model..I need help regarding my project.i need help regarding implementation of GA MATLAB code for a two

Merits and demerits of fixed bias with emitter resistor, Merits: The ci...

Merits: The circuit has the trend to stabilize operating point against changes in temperature and β-value. Demerits: In this type of circuit, to keep I C  independent o

Sketch ro versus vgs, Q. Sketch g m versus v GS for a JFET with I DSS = ...

Q. Sketch g m versus v GS for a JFET with I DSS = 10 mA, V P = 3V, V A = 100 V, and v DS = 10 V. See what happens if V A →∞. Also sketch r o versus v GS .

List the addressing modes supported by 8051, List the addressing modes supp...

List the addressing modes supported by 8051. 1. Register addressing  2. Direct  addressing 3. Register indirect addressing 4. Immediate addressing 5.Register addres

Constant voltage from solar panel, circuit for the buck boost regulator con...

circuit for the buck boost regulator connected to a ic regulator , my voltae range is 5v to 24v?

What do you mean by digital systems, Q. What do you mean by digital systems...

Q. What do you mean by digital systems? Electronics information is generally placed into two categories as digital and analog. The Digital information is represented in discret

Circuits, Circuits Typical  electronics circuits  are created  out  of...

Circuits Typical  electronics circuits  are created  out  of a basis  set of primitive elements such  as capacitors, voltage sources,  resistors,  transistors and inductors. T

Testing stationarity, 1)  Use plot of the stock return and consider the Aut...

1)  Use plot of the stock return and consider the Autocorrelation Function to determine the auto-regressive structure of the data and explain why you think the return is stationary

Explain ferrites suitability for high frequency application, Explain Suitab...

Explain Suitability of ferrites for high frequency application. Ferrites are extensively used in micro wave equipments and in computers. Ferrites are advantageous at high frequ

What is pipelined architecture, What is pipelined architecture? The com...

What is pipelined architecture? The computer is composed of two parts that operate asynchronously one part known as a BIU, fetches instruction from code memory while the memory

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd