Factorization example, Mathematics

Assignment Help:

Example 

Factorize x2 - 4x + 4.

If we substitute x = 1, the value of the expression will be (1)2 - 4(1) + 4 = 1

If we substitute x = -1, the value of the expression will be (-1)2 - 4(-1) +  4 = 9

If we substitute x = 2, the value of the expression will be (2)2 - 4(2) + 4  = 0

For x = 2, the value of the expression is 0. That is, x - 2 (observe that x - 2 = 0 and x = 2 are one and the same) is one of the factors of the expression x2 - 4x + 4. To obtain the other factor we divide the expression by the factor we got. That will be

x - 2 )

x-  4x + 4

( x - 2

       (-)

x2  -  2x

 


 

   -  2x + 4

 

       (-)

       -  2x + 4

 


 

                      0

 


From the division we observe that x - 2 is the other factor. When this is equated to zero we obtain x = 2. Therefore, the factors of x2 - 4x + 4 are (x - 2)(x - 2) or (x - 2)2.

Now, we look at another identity which is similar to the one you have seen earlier except the (-) sign. The identity is (a - b)2 = a2 - 2ab + b2. The advantage of being familiar with identities is that you do not have to sweat it out by factorizing each and every expression you are given. On the other hand it is not mandatory that each and every expression given should be in conformation with some identity. In this case there is no easy way out except solving the problem by trial and error method to start with and then go for division in order to know other factors.

Another identity of second degree we often come across is 

a2 - b2 = (a + b)(a - b)

According to this identity the difference of squares of any two quantities is equal to the product of the sum and the difference of the two quantities.


Related Discussions:- Factorization example

Which of the subsequent numbers is equivalent to 12.087, Which of the subse...

Which of the subsequent numbers is equivalent to 12.087? Zeros can be added to the end (right) of the decimal portion of a number without changing the value of the number; 12.

Millie purchased six bottles of soda how much she pay, Millie purchased six...

Millie purchased six bottles of soda at $1.15 each. How much did she pay? To ?nd out the total cost of six bottles, you must multiply the cost per bottle through 6; $1.15 × 6 =

Math, how do you add all the Y.AND X UP WITH 3

how do you add all the Y.AND X UP WITH 3

Doubles Plus 1 and Doubles Minus 1, Write the doubles fact you used to solv...

Write the doubles fact you used to solve the problem. 7 + 8 = 15

Solve 3 + 2 ln ( x /7+3 ) = -4 logarithm, Solve 3 + 2 ln ( x /7+3 ) = -4 . ...

Solve 3 + 2 ln ( x /7+3 ) = -4 . Solution This initial step in this problem is to get the logarithm by itself on one side of the equation  along with a coefficient of 1.

Example of integrals involving quadratics, Evaluate the following integral....

Evaluate the following integral. ∫√(x 2 +4x+5) dx Solution: Remind from the Trig Substitution section that to do a trig substitution here we first required to complete t

Geometry, find h in the parallelogram

find h in the parallelogram

If tana+sina=m and tana-sina=n, If tanA+sinA=m and tanA-sinA=n, show that m...

If tanA+sinA=m and tanA-sinA=n, show that m 2 -n 2 = 4√mn Ans:    TanA + SinA = m       TanA - SinA = n. m 2 -n 2 =4√mn . m 2 -n 2 = (TanA + SinA) 2 -(TanA - SinA) 2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd