Determine the eigenvalues and eigenvectors of the matrix, Mathematics

Assignment Help:

Determine the eigenvalues and eigenvectors of the subsequent matrix.

1897_Determine the eigenvalues and eigenvectors of the matrix.png

Solution:

The first thing that we require to do is determine the eigen-values. It means we require the next matrix,

1946_Determine the eigenvalues and eigenvectors of the matrix1.png

In particular we require determining where the determinant of this matrix is zero.

det(A - lIn)= (2 -l)(-6 -l) + 7 = = l2 + 4l + 5 = (l +5) (l-1)

Therefore, this looks like we will have two easy eigenvalues for this matrix, l1=-5 and l2=1.

We will now require finding the eigenvectors for each of these. Also see that as per the fact above, the two eigenvectors must be linearly independent.

To get the eigenvectors we simply plug into all eigenvalues in (2) and solve. Therefore, let's do that.

l1=-5;

In this case we require solving the following system,

2020_Determine the eigenvalues and eigenvectors of the matrix2.png

Recall that formally to solve this system we utilize the subsequent augmented matrix.

1131_Determine the eigenvalues and eigenvectors of the matrix3.png

Upon reducing down we notice that we find a single equation,

7h1 + 7h2 = 0                           ⇒         h1 = h2                        

It will yield an infinite number of solutions. It is expected behavior. By recall that we picked the eigenvalues hence the matrix would be particular and thus we would find infinitely many solutions.

Remember as well that we could have known this from the original system. It won't always be the case, although in the 2x2 case we can notice from the system that one row will be a multiple of another and so we will determine infinite solutions. From that point on we won't be in fact solving systems in these cases.  We will simply go straight to the equation and we can utilize either of the two rows for this equation.

Here, let's get back to the eigenvector, as it is what we were after. Generally, then the eigenvector will be any vector which satisfies the following,

1390_Determine the eigenvalues and eigenvectors of the matrix4.png

To find this we used the solution to the equation which we found above.

We actually don't need a general eigenvector though so we will pick a value for h2 to find an exact eigenvector. We can select anything (except h2 =0), so pick something which will make the eigenvector "nice". Remember as well that as we've already assumed such eigenvector is not zero we should select a value that will not give us zero, that is why we need to ignore h2 =0 in this case. There is the eigenvector for this eigen-value.

2212_Determine the eigenvalues and eigenvectors of the matrix5.png

By using h2 =1.

Now we find to do this all over again for the second eigen-value.

l2=1.

We'll perform much less work along with this part so we did with the earlier part. We will require solving the following system.

226_Determine the eigenvalues and eigenvectors of the matrix7.png

Obviously both rows are multiples of each other and thus we will find infinitely many solutions. We can select to work with either row. We'll run along with the first since to ignore having too various minus signs floating around.  Doing this provides us,

h1 + 7 h2 = 0                                        h1 = - 7 h2

Remember that we can solve that for either of the two variables. Though, with an eye in directions of working with these later on let's aim to ignore as many fractions as possible. The eigenvector is after that,

2351_Determine the eigenvalues and eigenvectors of the matrix8.png

Here h2 ≠ 0.

643_Determine the eigenvalues and eigenvectors of the matrix9.png

By use of h1= 1

By summarizes, we get

 

648_Determine the eigenvalues and eigenvectors of the matrix6.png

Remember that the two eigenvectors are linearly independent like predicted.


Related Discussions:- Determine the eigenvalues and eigenvectors of the matrix

Domain and range of a function , Domain and range of a functio:  One of th...

Domain and range of a functio:  One of the more significant ideas regarding functions is that of the domain and range of a function. In simplest world the domain of function is th

Slopes downward from left to right has a positive slope, Can you explain th...

Can you explain that it is true that a line that slopes downward from left to right has a positive slope?

Geometric progression (g.p.), Learning geometric progression ...

Learning geometric progression vis-á-vis arithmetic progression should make it easier. In geometric progression also we denote the first t

Basics of series - sequences and series, Series - The Basics That top...

Series - The Basics That topic is infinite series.  So just define what is an infinite series?  Well, let's start with a sequence {a n } ∞ n=1 (note the n=1 is for convenie

Find the coordinates of the other two vertices, The two opposite vertices o...

The two opposite vertices of a square are (-1, 2) and (3, 2). Find the coordinates of the other two vertices.

Conscious consumer, I am comparing building a house and buying a house. whi...

I am comparing building a house and buying a house. which one of the option you would choose.

Product, a product can be anything including physical good,services,places,...

a product can be anything including physical good,services,places,experience,nations,organizations,properties,information.discuss the statement?

The median- graphical method -progression , The median - it is a stati...

The median - it is a statistical value which is usually located at the center of a given set of data that has been organized in the order of size or magnitude as illustrating,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd