Determine the eigenvalues and eigenvectors of the matrix, Mathematics

Assignment Help:

Determine the eigenvalues and eigenvectors of the subsequent matrix.

1897_Determine the eigenvalues and eigenvectors of the matrix.png

Solution:

The first thing that we require to do is determine the eigen-values. It means we require the next matrix,

1946_Determine the eigenvalues and eigenvectors of the matrix1.png

In particular we require determining where the determinant of this matrix is zero.

det(A - lIn)= (2 -l)(-6 -l) + 7 = = l2 + 4l + 5 = (l +5) (l-1)

Therefore, this looks like we will have two easy eigenvalues for this matrix, l1=-5 and l2=1.

We will now require finding the eigenvectors for each of these. Also see that as per the fact above, the two eigenvectors must be linearly independent.

To get the eigenvectors we simply plug into all eigenvalues in (2) and solve. Therefore, let's do that.

l1=-5;

In this case we require solving the following system,

2020_Determine the eigenvalues and eigenvectors of the matrix2.png

Recall that formally to solve this system we utilize the subsequent augmented matrix.

1131_Determine the eigenvalues and eigenvectors of the matrix3.png

Upon reducing down we notice that we find a single equation,

7h1 + 7h2 = 0                           ⇒         h1 = h2                        

It will yield an infinite number of solutions. It is expected behavior. By recall that we picked the eigenvalues hence the matrix would be particular and thus we would find infinitely many solutions.

Remember as well that we could have known this from the original system. It won't always be the case, although in the 2x2 case we can notice from the system that one row will be a multiple of another and so we will determine infinite solutions. From that point on we won't be in fact solving systems in these cases.  We will simply go straight to the equation and we can utilize either of the two rows for this equation.

Here, let's get back to the eigenvector, as it is what we were after. Generally, then the eigenvector will be any vector which satisfies the following,

1390_Determine the eigenvalues and eigenvectors of the matrix4.png

To find this we used the solution to the equation which we found above.

We actually don't need a general eigenvector though so we will pick a value for h2 to find an exact eigenvector. We can select anything (except h2 =0), so pick something which will make the eigenvector "nice". Remember as well that as we've already assumed such eigenvector is not zero we should select a value that will not give us zero, that is why we need to ignore h2 =0 in this case. There is the eigenvector for this eigen-value.

2212_Determine the eigenvalues and eigenvectors of the matrix5.png

By using h2 =1.

Now we find to do this all over again for the second eigen-value.

l2=1.

We'll perform much less work along with this part so we did with the earlier part. We will require solving the following system.

226_Determine the eigenvalues and eigenvectors of the matrix7.png

Obviously both rows are multiples of each other and thus we will find infinitely many solutions. We can select to work with either row. We'll run along with the first since to ignore having too various minus signs floating around.  Doing this provides us,

h1 + 7 h2 = 0                                        h1 = - 7 h2

Remember that we can solve that for either of the two variables. Though, with an eye in directions of working with these later on let's aim to ignore as many fractions as possible. The eigenvector is after that,

2351_Determine the eigenvalues and eigenvectors of the matrix8.png

Here h2 ≠ 0.

643_Determine the eigenvalues and eigenvectors of the matrix9.png

By use of h1= 1

By summarizes, we get

 

648_Determine the eigenvalues and eigenvectors of the matrix6.png

Remember that the two eigenvectors are linearly independent like predicted.


Related Discussions:- Determine the eigenvalues and eigenvectors of the matrix

Share and dividend, i want to get market value of 10 popular shares of all ...

i want to get market value of 10 popular shares of all working days in a week

Sequence and series, how can we prove that an absolute convergent series is...

how can we prove that an absolute convergent series is convergent but the converse is not true.

Using two variables, Leo works at the Bagel Shop after school and on Saturd...

Leo works at the Bagel Shop after school and on Saturdays. He is paid $4.00 per hour after school and $5.00 per hour on Saturday. Last week Leo worked a total of 12 hours and made

Find out the length of hamiltonian path, Find out the length of Hamiltonian...

Find out the length of Hamiltonian Path in a connected graph of n vertices. Ans: The length of Hamiltonian Path in a connected graph of n vertices is n-1.

Determine and classify all critical points , Determine and classify all the...

Determine and classify all the critical points of the given function.  Described the intervals where function is increasing & decreasing. Solution: Firstly we'll require

Fractions, question paper on fractions

question paper on fractions

Levels of significance - rejection and acceptance regions, Levels of signif...

Levels of significance A level of significance is a probability value which is utilized when conducting tests of hypothesis. A level of significance is mostly the probability

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd