Determine the eigenvalues and eigenvectors of the matrix, Mathematics

Assignment Help:

Determine the eigenvalues and eigenvectors of the subsequent matrix.

1897_Determine the eigenvalues and eigenvectors of the matrix.png

Solution:

The first thing that we require to do is determine the eigen-values. It means we require the next matrix,

1946_Determine the eigenvalues and eigenvectors of the matrix1.png

In particular we require determining where the determinant of this matrix is zero.

det(A - lIn)= (2 -l)(-6 -l) + 7 = = l2 + 4l + 5 = (l +5) (l-1)

Therefore, this looks like we will have two easy eigenvalues for this matrix, l1=-5 and l2=1.

We will now require finding the eigenvectors for each of these. Also see that as per the fact above, the two eigenvectors must be linearly independent.

To get the eigenvectors we simply plug into all eigenvalues in (2) and solve. Therefore, let's do that.

l1=-5;

In this case we require solving the following system,

2020_Determine the eigenvalues and eigenvectors of the matrix2.png

Recall that formally to solve this system we utilize the subsequent augmented matrix.

1131_Determine the eigenvalues and eigenvectors of the matrix3.png

Upon reducing down we notice that we find a single equation,

7h1 + 7h2 = 0                           ⇒         h1 = h2                        

It will yield an infinite number of solutions. It is expected behavior. By recall that we picked the eigenvalues hence the matrix would be particular and thus we would find infinitely many solutions.

Remember as well that we could have known this from the original system. It won't always be the case, although in the 2x2 case we can notice from the system that one row will be a multiple of another and so we will determine infinite solutions. From that point on we won't be in fact solving systems in these cases.  We will simply go straight to the equation and we can utilize either of the two rows for this equation.

Here, let's get back to the eigenvector, as it is what we were after. Generally, then the eigenvector will be any vector which satisfies the following,

1390_Determine the eigenvalues and eigenvectors of the matrix4.png

To find this we used the solution to the equation which we found above.

We actually don't need a general eigenvector though so we will pick a value for h2 to find an exact eigenvector. We can select anything (except h2 =0), so pick something which will make the eigenvector "nice". Remember as well that as we've already assumed such eigenvector is not zero we should select a value that will not give us zero, that is why we need to ignore h2 =0 in this case. There is the eigenvector for this eigen-value.

2212_Determine the eigenvalues and eigenvectors of the matrix5.png

By using h2 =1.

Now we find to do this all over again for the second eigen-value.

l2=1.

We'll perform much less work along with this part so we did with the earlier part. We will require solving the following system.

226_Determine the eigenvalues and eigenvectors of the matrix7.png

Obviously both rows are multiples of each other and thus we will find infinitely many solutions. We can select to work with either row. We'll run along with the first since to ignore having too various minus signs floating around.  Doing this provides us,

h1 + 7 h2 = 0                                        h1 = - 7 h2

Remember that we can solve that for either of the two variables. Though, with an eye in directions of working with these later on let's aim to ignore as many fractions as possible. The eigenvector is after that,

2351_Determine the eigenvalues and eigenvectors of the matrix8.png

Here h2 ≠ 0.

643_Determine the eigenvalues and eigenvectors of the matrix9.png

By use of h1= 1

By summarizes, we get

 

648_Determine the eigenvalues and eigenvectors of the matrix6.png

Remember that the two eigenvectors are linearly independent like predicted.


Related Discussions:- Determine the eigenvalues and eigenvectors of the matrix

Differentiate functions h (t ) = 2t5 + t2- 5 / t2 , Differentiate f...

Differentiate following functions.                       h (t ) = 2t 5 + t 2 - 5 / t 2 We can simplify this rational expression as follows.                       h (t )

theoretical minimum number of stations, A company is setting up an assembl...

A company is setting up an assembly line to produce 100 units/hour. The table shown below identifies the work elements, times, and immediate predecessors. a)      What cycle tim

Statistic, The mean height of eight children is 136cm. if the height of sev...

The mean height of eight children is 136cm. if the height of seven children are 143,125,133,140,120,135 and 152,find the height of eighth student.

Testing the hypothesis equality of two variances, Testing the hypothesis eq...

Testing the hypothesis equality of two variances The test for equality of two population variances is based upon the variances in two independently chosen random samples drawn

Evaluate the integral - trig substitutions, Example of Trig Substitutions ...

Example of Trig Substitutions Evaluate the subsequent integral. ∫ √((25x 2 - 4) / x) (dx) Solution In this type of case the substitution u = 25x 2 - 4 will not wo

Addition involving negative numbers, Q. Addition Involving Negative Numbers...

Q. Addition Involving Negative Numbers? Ans. When you add together positive and negative numbers, there are essentially three possibilities that you can encounter. Let's e

Concepts of sampling error, Use the concepts of sampling error and z- scor...

Use the concepts of sampling error and z- scores to explain the concept of distribution of sample means.

Calculate one-sided limits, Calculate the value of the following limits. ...

Calculate the value of the following limits. Solution From the graph of this function illustrated below, We can illustrate that both of the one-sided limits suffer

Find out that sets of functions are linearly dependent, Find out if the fol...

Find out if the following sets of functions are linearly dependent or independent.  (a) f (  x ) = 9 cos ( 2 x )    g (  x ) = 2 cos2 (  x ) -  2 sin 2 (  x ) (b) f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd