Utilizes the infinite definition of the limit to prove limit, Mathematics

Assignment Help:

Utilizes the definition of the limit to prove the given limit.

1819_limit39.png

Solution

Let M > 0 be any number and we'll have to choose a δ > 0 so that,

1/ x2  > M                                                  whenever   0 < |x - 0 | <|x|< δ

We'll begin with the left inequality and attempt to get something in the end which looks like the right inequality.  To do this basically we'll solve the left inequality for x and we'll need to recall that √x2  = |x| .  Hence, here's that work.

1/x2  > M ⇒     x2  <  1/M ⇒    |x| <     1/√M

Thus, it looks like we can select δ =1/√M       .  All we have to do now is verify this guess.

Let M > 0 be any number, select δ =1/√M and suppose that 0 < |x| <1/√M   .

We tried to illustrate that our supposition satisfied the left inequality through working with it directly.  Though, in this, the function and our supposition on x that we've got in fact will make this easier to begin with the supposition on x and illustrates that we can get the left inequality out of that.  Note as well that this is being done this way mostly due to the function that we're working along with and not due to the type of limit that we've got.

Doing this we get ,

|x| <     1/√M              

|x| 2<    1/M                                                  square both sides

x2  <     1/M                                               acknowledge that |x| 2 2

1/x2 >M                                                   solve for x2

Thus, we've managed to illustrate that,

1/ x2 > M                   whenever           0 < |x - 0 | < 1/√M              

and thus by the definition of the limit we have,

1830_limit40.png

For our following set of limit definitions let's look at the two definitions for limits at infinity. Again, we require one for a limit at plus infinity & another for negative infinity.


Related Discussions:- Utilizes the infinite definition of the limit to prove limit

Project, report on shares and dovidend using newspaper

report on shares and dovidend using newspaper

Illustrate median with example, Q. Illustrate Median with example? Ans...

Q. Illustrate Median with example? Ans. The median of a data set is the middle value (or the average of the two middle terms if there are an even number of data values) wh

Surface area, Find the amount of sheet metal need to form a conical funnel ...

Find the amount of sheet metal need to form a conical funnel of base radius 30cm with a vertical height of 50cm, allowing for 0.5cm overlap. Find the total surface area?

Management, Discuss demanding total market demand verus gaing market share

Discuss demanding total market demand verus gaing market share

Statistics, How do I choose a distribution test for a sample size of 60? Pr...

How do I choose a distribution test for a sample size of 60? Probability of rolling a 4 on a six sided die.

G .E matrix, using the g.e matrix, how can you turn an unattractive product...

using the g.e matrix, how can you turn an unattractive product to be attractive

Normal distribution to approximate binomial distribution, Survey 83% of com...

Survey 83% of community for a park. Randomly select 21 people if they do or do not want a park. Can you use normal distribution to approximate binomial distribution?If so find mean

What is multiplying fractions, What is Multiplying Fractions ? The rule...

What is Multiplying Fractions ? The rule for multiplying fractions is to "multiply across": Multiply the numerators to get the numerator of the answer. Multiply the den

Show that the height of the aero plane, From  an  aero  plane  vertically  ...

From  an  aero  plane  vertically  above  a  straight  horizontal  road,  the  angles  of depression of two consecutive milestones on opposite sides of the aero plane are observed

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd