Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Time-Dependent Circuit Analysis?
The response of networks to time-varying sources is considered in this chapter. The special case of sinusoidal signals is of particular importance, because the low-frequency signals (i.e., currents and voltages) that appear in electric power systems as well as the high-frequency signals in communications are usually sinusoidal. The powerful technique known as phasor analysis, which involves the use of complex numbers, is one of the electrical engineer's most important tools developed to solve steady-state ac circuit problems. Since a periodic signal can be expressed as a sumof sinusoids through a Fourier series, and superposition applies to linear systems, phasor analysis will be used to determine the steady-state response of any linear system excited by a periodic signal. Thus the superposition principle allows the phasor technique to be extended to determine the system response of a linear system.
The total response of a system containing energy-storage elements (capacitors and inductors) is analyzed in terms of natural and forced responses (or transient and steady-state responses). The Laplace transformation, which provides a systematic algebraic approach for determining both the forced and the natural components of a network response. The concept of a transfer function is also introduced along with its application to solve circuit problems. The network response to sinusoidal signals of variable frequency is investigated. Also, two-port networks and block diagrams, in terms of their input-output characteristics.
Suppose that the length of a 10Base-5 cable is 2500 metres. If the speed of propagation in a thick co-axial cable is 60% of the speed of light, how long does it take for a bit to
Q. The equations for a two-port network are given by V 1 = z 11 I 1 + z 12 I 2 0 = z 21 I 1 + (z 22 + Z L )I 2 V 2 = - I 2 Z L (a) Satisfying the equations, dev
1) only one pair of slip rings are required (to energise the rotating field coil) regardless of the number of phases produced by the alternator (three phases is common because of t
Q. Define amplification factor, drain resistance and transconductance and derive the relationship between drain resistance and trans conductance? Drain resistance It is the
what is use of dummy coil in DC m/c????
Three Phase AC Circuit: Alternating circuits thus far discussed have single phase supply system and it's satisfactory for domestic application as light, fan and heating, etc.
A forward converter has the following parameters: input source voltage V s = 100 V, N 1 /N 2 = N 1 /N 3 = 1, magnetizing inductance L m = 5 mH, output inductor L o = 200 μH, C
Dc Circuits: In this unit, you have learned about methods of network analysis which are general in nature such as KCL, KVL, Nodal and Mesh analysis. These general methods may
explain nyquist rate?
For Carry Flag RC (Return of Carry) and RNC ( Return on no Carry) Instruction RC returns from the subroutine to the calling program if carry flag is et (CY= 1). The
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd