Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Time-Dependent Circuit Analysis?
The response of networks to time-varying sources is considered in this chapter. The special case of sinusoidal signals is of particular importance, because the low-frequency signals (i.e., currents and voltages) that appear in electric power systems as well as the high-frequency signals in communications are usually sinusoidal. The powerful technique known as phasor analysis, which involves the use of complex numbers, is one of the electrical engineer's most important tools developed to solve steady-state ac circuit problems. Since a periodic signal can be expressed as a sumof sinusoids through a Fourier series, and superposition applies to linear systems, phasor analysis will be used to determine the steady-state response of any linear system excited by a periodic signal. Thus the superposition principle allows the phasor technique to be extended to determine the system response of a linear system.
The total response of a system containing energy-storage elements (capacitors and inductors) is analyzed in terms of natural and forced responses (or transient and steady-state responses). The Laplace transformation, which provides a systematic algebraic approach for determining both the forced and the natural components of a network response. The concept of a transfer function is also introduced along with its application to solve circuit problems. The network response to sinusoidal signals of variable frequency is investigated. Also, two-port networks and block diagrams, in terms of their input-output characteristics.
What is the use of stepper motor? A stepper motor is a device used to get an accurate position control of rotating shafts. A stepper motor employs rotation of its shaft in term
series and parallel circuit
Q. A 150-kVA, 2400/240-V, 60-Hz, single-phase transformer has the following parameters: R 1 = 0.2 , R 2 = 0.002 , X 1 = 0.45 , X 2 = 0.0045 , RC = 10 k, and Xm = 1.55 k,
Q. What do you mean by Source Encoding? After the quantization of message samples, the digital system will then code each quantized sample into a sequence of binary digits (bit
Calculate the monthly electric bill for TESTU. Metering is as follows: B 00,000 kWHr C 00,000 kVARHr D 0,000 kW peak demand Facilities Charge = $500
I need to prove of shockly diode equation
A DT LTI system has the following impulse response: h(n)=[cos(pi/+delta(n)] u(n-3)u(n-2) (a) Find the system’s frequency response h(e^jw ). (b) Sketch the magnitude and phase respo
The assignment comprises two parts, a CPLD Design Exercise and a CPLD Design Project. The CPLD Design Exercise will enable you to acquire competance in programmable logic design
Differentiate between Motorola processors and INTEL processors. Comparison between Motorola processors and INTEL processors: AMD/Intel processors are actually about similar t
Q. A negative impedance converter is used, as shown in Figure. Show that the load current i L is given by v in /R, which is independent of Z L . Note that since the load sees a cu
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd