Explain time-dependent circuit analysis, Electrical Engineering

Assignment Help:

Q. Explain Time-Dependent Circuit Analysis?

The response of networks to time-varying sources is considered in this chapter. The special case of sinusoidal signals is of particular importance, because the low-frequency signals (i.e., currents and voltages) that appear in electric power systems as well as the high-frequency signals in communications are usually sinusoidal. The powerful technique known as phasor analysis, which involves the use of complex numbers, is one of the electrical engineer's most important tools developed to solve steady-state ac circuit problems. Since a periodic signal can be expressed as a sumof sinusoids through a Fourier series, and superposition applies to linear systems, phasor analysis will be used to determine the steady-state response of any linear system excited by a periodic signal. Thus the superposition principle allows the phasor technique to be extended to determine the system response of a linear system.

The total response of a system containing energy-storage elements (capacitors and inductors) is analyzed in terms of natural and forced responses (or transient and steady-state responses). The Laplace transformation, which provides a systematic algebraic approach for determining both the forced and the natural components of a network response. The concept of a transfer function is also introduced along with its application to solve circuit problems. The network response to sinusoidal signals of variable frequency is investigated. Also, two-port networks and block diagrams, in terms of their input-output characteristics.


Related Discussions:- Explain time-dependent circuit analysis

Find the characteristic impedance, (a) Now consider a typical open-wire tra...

(a) Now consider a typical open-wire transmission line with parameters of R = 14 /mi, L = 4.6 mH/mi, C = 0.01 µF/mi, and G = 0.3×10 -6 S/mi. If the line operates at 1 kHz, find t

Determine the slip at maximum torque, A three-phase induction motor, operat...

A three-phase induction motor, operating at its rated voltage and frequency, develops a starting torque of 1.6 times the full-load torque and a maximum torque of 2 times the full-l

#linear programming with all three constraints.., #z =x1+2.5x2, with constr...

#z =x1+2.5x2, with constraints, x1+x2>=2, x2 x1+x2 x1=3.question..

Explain public mode, Explain PUBLIC For large programs several small mo...

Explain PUBLIC For large programs several small modules are linked together. In order that the modules link together correctly any variable name or label referred to in other m

What is logic gates - microprocessor, What is Logic Gates? The Logic Gat...

What is Logic Gates? The Logic Gates are circuits made up of transistors, diodes, and resistors. The Logic gates process one or more input signals in a logical fashion. Dependin

Engineer, explain the alphanumeric codes

explain the alphanumeric codes

FET operation, ON output plot of a JFET n-channel transistor if ID is close...

ON output plot of a JFET n-channel transistor if ID is close to IDSS does the value of VGS close to VP?

State thevenin'' s theorem, Thevenin' s Theorem Thevenins Theorem state...

Thevenin' s Theorem Thevenins Theorem states: "Any linear circuit containing several energy source and resistances can be replaced by just a Single Voltage in series with a

Factors of contributing to losses in service cables, Factors of Contributin...

Factors of Contributing to Losses in Service Cables 1. Tapping of underground service cables: The service cables must be visible so that tapping of cables can be detected. U

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd