Explain the common forms of linear equations, Mathematics

Assignment Help:

Explain the Common Forms of Linear Equations ?

An equation whose graph is a line is called a linear equation. Here are listed some special forms of linear equations. Why should you know these? First, because you will often be using equations like this, and you will need to visualize their graphs. Second, because often you might know something about a line (like its slope, or its x-intercept), and need to be able to write down the equation.

1688_Common Forms of Linear Equations.png


Related Discussions:- Explain the common forms of linear equations

Sets, What is the subset of {a,b,c}

What is the subset of {a,b,c}

Scalar equation of plane - three dimensional spaces, Scalar Equation of Pla...

Scalar Equation of Plane A little more helpful form of the equations is as follows. Begin with the first form of the vector equation and write a vector for the difference. {

How many permutations of the letters a b c d e f g h, How many permutations...

How many permutations of the letters A B C D E F G H consist of string DEF?    Ans: It is the dilemma of finding number of words that can be formed along with the given 8 lette

Find the interval of validity, Solve the subsequent IVP and find the interv...

Solve the subsequent IVP and find the interval of validity for the solution. y' + (4/x) y = x 3 y 2 ,       y(2) = - 1,  x > 0 Solution Thus, the first thing that we re

Algebra, Evaluate: 30 - 12÷3×2 =

Evaluate: 30 - 12÷3×2 =

The larger angle 15 find the measure of the smaller angle, Two angles are c...

Two angles are complementary. The larger angle is 15° more than twice the smaller. Find out the measure of the smaller angle. Let x = the number of degrees in the smaller angle

Example of developing an understanding, I gave my niece a whole heap of bea...

I gave my niece a whole heap of beads and showed her how to divide it up into sets of 10 beads each. Then I showed her how she could lay out each set of I0 beads in a line, and cal

Prove that r is an equivalence relation, 1. Let S be the set of all nonzero...

1. Let S be the set of all nonzero real numbers. That is, S = R - {0}. Consider the relation R on S given by xRy iff xy > 0. (a) Prove that R is an equivalence relation on S, an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd