Example of integrals involving quadratics, Mathematics

Assignment Help:

Evaluate the following integral.

∫√(x2+4x+5) dx

Solution:

Remind from the Trig Substitution section that to do a trig substitution here we first required to complete the square on the quadratic. This provides,

X2+4x+5 = x2+4x+4-4+5=(x+2)2+1

After completing the square the integral becomes like this:

∫√(x2 + 4x +5) dx

= ∫ √ ((x+2)2 1dx)

Upon doing this we can recognize the trig substitution that we require.  Here it is,

x + 2 = tan θ

x= tan θ -2

dx = sec2 θdθ

√((x + 2)2 +1)

= √ tan2 θ+1

=√ sec2 θ

=|sec θ |

= sec θ

Recall that as we are doing an indefinite integral we be able to drop the absolute value bars.  By using this substitution the integral becomes,

20_Example of Integrals Involving Quadratics 2.png

∫ √x2 + 4x + 5 dx = ∫ sec3 θ d θ

= ½ (secθ tanθ + ln |secθ + tan θ|) + c

We can end the integral out along with the following right triangle.

tanθ = (x+2/1)

secθ = √(x2 + 4x +5/1)

        = √ (x2+4x+5)

1954_Example of Integrals Involving Quadratics 1.png

∫ √(x2+4x+5) dx = ½ ((x+2)√x2+4x+5+1n|x+2+√x2+4x+5|) + c

Thus, by completing the square we were capable to take an integral that had a general quadratic in it and transform it into a form that permitted us to make use of a known integration technique.


Related Discussions:- Example of integrals involving quadratics

What is exponential functions, What is Exponential Functions ? Exponent La...

What is Exponential Functions ? Exponent Laws Review: A) Ax / Ay = A(x + y) B) Ax / Ay = A(x - y) C) (ABC)x = AxBxCx D) ((Ax)y)z = Axyz E) (A/B)x = Ax /Bx Definition

Geometric interpretation of the cross product, Geometric Interpretation of ...

Geometric Interpretation of the Cross Product There is as well a geometric interpretation of the cross product.  Firstly we will let θ be the angle in between the two vectors a

Children learn maths by experiencing things, Children Learn By Experiencing...

Children Learn By Experiencing Things : One view about learning says that children construct knowledge by acting upon things. They pick up things, throw them, break them, join the

Relative frequency definition, Relative Frequency  This type of probab...

Relative Frequency  This type of probability requires us to make some qualifications. We define probability of event A, occurring as the proportion of times A occurs, if we re

Calculate the radius of the circle, In the figure, ABCD is a square inside ...

In the figure, ABCD is a square inside a circle with centre O. The Centre of the square coincides with O & the diagonal AC is horizontal of AP, DQ are vertical & AP = 45 cm, DQ = 2

What is 19% of 26, What is 19% of 26? To ?nd out 19% of 26, multiply 26...

What is 19% of 26? To ?nd out 19% of 26, multiply 26 through the decimal equivalent of 19% (0.19); 26 × 0.19 = 4.94.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd