application of linear function, Mathematics

Assignment Help:
four times an unknown number is equal to twice the sum of five and that unknown number

Related Discussions:- application of linear function

What is limit x tends to 0 log(1+x)/x to the base a?, Here we will use the...

Here we will use the expansion method Firstly lim x-0 log a (1+x)/x firstly using log property we get: lim x-0 log a (1+x)-logx then we change the base of log i.e lim x-0 {l

Venn Diagram, In a group of 85 people, 33 own a microwave, 28 own a DVD pla...

In a group of 85 people, 33 own a microwave, 28 own a DVD player and 38 own a computer. In addition, 6 people own both a microwave and a DVD player, 9 own both a DVD player and a c

Lattice or complement lattice, Let  be the set of all divisors of n. Constr...

Let  be the set of all divisors of n. Construct a Hasse diagram for D15, D20,D30. Check whether it is a lattice Or Complement lattice.

Hyperbolic paraboloid- three dimensional space, Hyperbolic Paraboloid- Thre...

Hyperbolic Paraboloid- Three Dimensional Space The equation which is given here is the equation of a hyperbolic paraboloid. x 2 / a 2 - y 2 / b 2 = z/c Here is a dia

What are logarithmic function, The logarithm of a provided number b to the ...

The logarithm of a provided number b to the base 'a' is the exponent showing the power to which the base 'a' have to be raised to get the number b. This number is defined as log a

Polar coordinates, THE CURVE C HAS POLAR EQUATION R=[X^1/2][E^X^2/PI]. WHER...

THE CURVE C HAS POLAR EQUATION R=[X^1/2][E^X^2/PI]. WHERE X IS GREATER THAN OR EQUAL TO 0 BUT LESS THAN OR EQUAL TO PI. THE AREA OF THE FINITE REGION BOUNDED BY C AND THE LINE X EQ

Simultaneous equations by substitution, Simultaneous equations by substitut...

Simultaneous equations by substitution: Solve the subsequent simultaneous equations by substitution. 3x + 4y = 6      5x + 3y = -1 Solution: Solve for x: 3x = 6

Arc length for parametric equations, Arc Length for Parametric Equations ...

Arc Length for Parametric Equations L = ∫ β α √ ((dx/dt) 2 + (dy/dt) 2 ) dt Note: that we could have utilized the second formula for ds above is we had supposed inste

Rational exponents, Now we have to start looking at more complicated expone...

Now we have to start looking at more complicated exponents. In this section we are going to be evaluating rational exponents. i.e. exponents in the form

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd