Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Equivalent Circuit of a Polyphase Induction Machine
The inductionmachinemay be regarded as a generalized transformer inwhich energy is converted and electric power is transferred between stator and rotor, along with a change of frequency and a flow of mechanical power. At standstill, however, the machine acts as a simple transformer with an air gap and a short-circuited secondary winding. The frequency of the rotor-induced emf is the same as the stator frequency at standstill. At any value of the slip under balanced steady-state operation, the rotor current reacts on the statorwinding at the stator frequency because the rotating magnetic fields caused by the stator and rotor are stationary with respect to each other.
The induction machine may thus be viewed as a transformer with an air gap and variable resistance in the secondary; the stator of the induction machine corresponds to the transformer primary, and the rotor corresponds to the secondary. For analysis of the balanced steady state, it is sufficient to proceed on a per-phase basis with some phasor concepts; so we will now develop an equivalent circuit on a per-phase basis. Only machines with symmetrical polyphase windings excited by balanced polyphase voltages are considered. As in other discussions of polyphase devices, let us think of three-phase machines as wye-connected, so that currents are always line values and voltages are always line-to-neutral values (on a per-phase basis).
The resultant air-gap flux is produced by the combined mmfs of the stator and rotor currents. For the sake of conceptual and analytical convenience, the total flux is divided into a mutual flux (linking both the stator and the rotor) and leakage fluxes, represented by appropriate reactances.
Q. Sketch g m versus v GS for a JFET with I DSS = 10 mA, V P = 3V, V A = 100 V, and v DS = 10 V. See what happens if V A →∞. Also sketch r o versus v GS .
show the decoding logic for 11011 code if an active high and an active low output required
Illustrate the working of full wave rectifier using bridge rectifier. How is it different from centre tapped Rectifier ? Illustrate Avalanche and Zener breakdown. Draw & explain
Q. What can explain the failure of relative PPP to hold in reality? Answer: Government procedures of the price level differ from country to country. One cause for thes
Fourier transform (filtering) (i) Perform low pass filtering in the frequency domain. Write and m-file lowfft.m which does this operation. lowfft.m function lowfft im
Q. The loop gain of an elementary feedback control system(see Figure) is given by G(s)·H(s), which is 10/(1+s/2)(1+s/6)(1+s/50). Sketch the asymptotic Bode plot of the loop-gain fu
write a c program for suggler message decoder
Circuits Typical electronics circuits are created out of a basis set of primitive elements such as capacitors, voltage sources, resistors, transistors and inductors. T
Q. What are the different types of MOSFET transistors ? The metal-oxide semiconductor field-effect transistor (MOSFET) is a three-terminal active device which has many applicat
#Minimum 100 words accepted#explain depletion operations of MOSFET
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd