Differentiate between limiting and known errors, Electrical Engineering

Assignment Help:

Q. With suitable examples differentiate between limiting and known errors.

Sol. Limiting Errors (Guarantee Errors): The accuracy and precision of an instrument depends upon its design, the material used and the workmanship that goes into making the instrument. The choice of an instrument for a particular application depends upon accuracy is desired. It is not economical to use expensive materials and skill for the manufacture of the instrument. But and instrument used for an application requiring a high degree of accuracy has to use expensive material and a highly skilled workmanship. The economical production of any instrument requires the proper choice of  material, design and skill. In order to assure the purchaser of the quality of the instrument, the manufacture guarantees a certain accuracy. In most instruments the accuracy is guaranteed to be within a certain percentage of the rated value. Thus the manufacture has to specify the deviations from the nominal value of a particular quantity. The limits of these deviations from the specified value are defined as limiting Errors or Guarantee Errors.

We can say that the manufacture guarantees or promises that the error in the item he is  selling is no greater than the limit set. The magnitude of a quantity having a nominal value As and a maximum error or limiting error of ± A must have a magnitude Aa  between the limits As-A and As + A  or Actual value of quantity Aa = As ± A

For example, the nominal magnitude of a resistor is 100  with a limiting error of ± 10  .

The magnitude of the resistance will be between the limits

Aa =100±10  or    Aa≥90  and Aa≤110

In other words the manufacture guarantees that the value of resistance of the resister lies between 90  and 110 .

Example-1 : The value of capacitance of a capacitor is specified as I µF±5% by the manufacturer. Find the limits between which the value of the capacitance is guaranteed.

Solution: The guaranteed value of the capacitance lie within the limits:

 

Aa = As(1±)=1*(1±0.05)=0.95to 1.05 µf.

Note: The same idea of a guarantee limiting the worst possible case applies to electrical measurements. The measurements may involve several components, each of which may be delimited by a guarantee error. Thus the same treatment is to be followed for quantities under measurement as is followed for specified quantities.

Example-2 A 0 - 150 V volunteer has a guaranteed accuracy of 1 percent of full scale reading. The voltage measured by this instrument is 75 V. calculate the limiting error in percent.

 

Solution: The magnitude of limiting error of instrument is .

 

Combination of Quantities with Limiting Errors: When two or more quantities, each having a limiting error, are combined, it is advantageous to be able to compute the limiting error of the combination. The limiting error can be easily found by considering the relative increment of the function if the final result is in the form of an algebraic equation.

 

Example-4 : Three resistors have the following ratings:

 

Determine the magnitude and limiting error in ohm and in percent of the resistance of these resistances connected in series.

Solution : The values of resistances are

The limiting value of resultant resistance

         R=(37+75+50)±(1.85+3.75+2.50)=162±8.10O

Magnitude of resistance = 162O and error in ohm =±8.1O.

Percent limiting error of series combination of resistances

Thus we conclude from the above examples from the above examples that the guarantee values are obtained by taking direct sum of the possible errors, adopting the algebraic signs that give the worst possible case. In fact setting of guarantee limits is necessarily a pessimistic process. This is true from manufacturer's view point as regards his promise to the buyer and it is also true of the user in setting accuracy limits in results of lhis measurements.

Probable Error: Let us consider the two points - r and = r. These points are so located that the area bounded by the curve, the x axis and the ordinates erected at x = - r and x = + r is equal to half of the total area under the curve. That is half the deviations lie between x =± r.

A convenient measure of precision is the quantity r. It is called Probable Error or simply P.E. The reason for this name is the fance mentioned above that half the observed values lie between the limits ± r. If we determine r as the result of n measurements and then make an additional measurement, the chances are 50-50 percent that the new value will lie between - r and + r that is, the chances are even that any one reading will have an error no greater than ± r.


Related Discussions:- Differentiate between limiting and known errors

Calculate reactive power to be delivered by the capacitor, A single-phase s...

A single-phase source delivers 100 kW to a load operating at 0.8 lagging power factor. In order to improve the system's efficiency, power factor improvement (correction) is achieve

Cro, role of trigger circuit in cro

role of trigger circuit in cro

Assembly language programming , Assembly Language Programming  In this...

Assembly Language Programming  In this   chapter  we will   discuss  programming  in assembly  language and  machine  language. The  difference  in machine  assembly  and high

Rar rotate accumulator right through carry instruction , RAR  Rotate Accum...

RAR  Rotate Accumulator Right Through Carry Instruction This instruction rotates the contents  of the  accumulator  towards right by  one bit. The D 7   bit moves to D 6 posi

Show the dot convention, Q. For the coupled coils shown in Figure, a dot ha...

Q. For the coupled coils shown in Figure, a dot has been arbitrarily assigned to a terminal as indicated. Following the dot convention presented in the text, place the other dot in

Trends, what is south africas perspective?

what is south africas perspective?

find the thevenin and norton equivalent circuits, The output port of the o...

The output port of the one-port is defined by terminals A and B. Given: R 1 = 10 k_, R 2 = 20 k_, R 3 = 10 k_, and R 4 = 10 k_ V 1 = 20 V and I1 = 0.8 mA a) Find the T

Estimate the the volume of water in the tank, A conical tank is shown in Fi...

A conical tank is shown in Figure. The tank is filled with water.  Using MATLAB, determine: a.   the volume of water in the tank b.   the weight of the water in the tank.

What is the purpose of carry flag and zero flag, What is the purpose of car...

What is the purpose of carry (c) flag and zero (z) flag? Carry flag conatins the carry after addition or borrow after subtraction. This carry flag also shows error conditions,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd