Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Exchange rate, #question. in january sunanda changed 25000 pounds into doll...

#question. in january sunanda changed 25000 pounds into dollars when the exchange rate was $1.96= 1 pounin june she changed the dallars back into when the exchange rate was $1.75=1

Exponential and radical functions, Graph each data set. Which kind of mode...

Graph each data set. Which kind of model best describes the data? {(0,3), (1,9), (2,11) (3,9), (4,3)}

Fx, How do i do an fx problem?

How do i do an fx problem?

Bear population a word problem, To estimate the size of the bear population...

To estimate the size of the bear population in Keweenaw Pennisula, conservationists captured, tagged and released 50 bears. One year later, a random sample of 100 bears included on

Exponential growth and decay, There are several quantities out there within...

There are several quantities out there within the world which are governed (at least for a short time period) by the equation,

Negative and positive faction, how do you add and subtract negative and pos...

how do you add and subtract negative and positive faction

Hyperbolas, The next graph that we have to look at is the hyperbola.  There...

The next graph that we have to look at is the hyperbola.  There are two standard forms of a hyperbola.  Here are instance of each. Hyperbolas contain two vaguely parabola s

I need help with my cahsee, Ask questionteachme how to graph points convert...

Ask questionteachme how to graph points convert fractions to deciams #Minimum 100 words accepted#

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd