Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Basic algebra, how do u figure out a way to make algebra simple?

how do u figure out a way to make algebra simple?

I just don''t get it, Determine which system below will produce infinitely ...

Determine which system below will produce infinitely many solutions. 2x + 5y = 24 2x + 5y = 42 3x - 2y = 15 6x + 5y = 11 4x - 3y = 9 -8x + 6y = -18 5x - 3y = 16 -2x + 3y =

Word Problem, A student rented a bicycle for a one-time fee of $12.00 and t...

A student rented a bicycle for a one-time fee of $12.00 and then a charge of $0.85 per day.She paid $28.15 for the use of the bicycle. How many days did she keep it?

What is interquartile?, i have a test tomorrow and its to see if i get into...

i have a test tomorrow and its to see if i get into high 7th grade math. there was a question on the practice packet about interquartile range. what does it mean and how do i find

Ellipses, In a earlier section we looked at graphing circles & since circle...

In a earlier section we looked at graphing circles & since circles are actually special cases of ellipses already we've got most of the tools under our belts to graph ellipses.  Al

Relationship between the graph of a function and its inverse, There is inte...

There is interesting relationship among the graph of function and its inverse. Here is the graph of the function & inverse from the first examples. We'll not deal along with the

Linear equations, 6x-2y=14 find the value of y when x =0

6x-2y=14 find the value of y when x =0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd