Determine the two zeroes - factor theorem, Algebra

Assignment Help:

Given that x=2 is a zero of P ( x ) = x3 + 2x2 - 5x - 6 determine the other two zeroes.

Solution

Firstly, notice that we actually can say the other two since we know that it is a third degree polynomial and thus by The Fundamental Theorem of Algebra we will contain exactly 3 zeroes, with some repeats possible.

Thus, since we know that can write P (x) as, x=2 is a zero of P ( x ) = x3 + 2 x2 - 5x - 6 the Fact 1 tells us that we

                                                P (x) =(x - 2) Q (x)

and Q ( x ) will be a quadratic polynomial. Then we can determine the zeroes of Q (x) by any of the methods which we've looked at to this point & by Fact 2 we know that the two zeroes we obtain from Q ( x ) will also by zeroes of P ( x ) .  At this point we'll contain 3 zeroes and thus we will be done.

Hence, let's find Q (x) .  To do this all we have to do is a quick synthetic division as follows.

1205_Determine the two zeroes - Factor Theorem.png

Before writing down Q ( x ) remember that the final number in the third row is the remainder and that we know that P ( 2) have to be equal to this number.  Thus, in this case we have that P ( 2) = 0 .  If you think regarding it, we have to already know this to be true. We were given into the problem statement the fact that x= 2 is a zero of P (x) and that means that we ought to have P ( 2) = 0 .

Thus, why go on regarding this? It is a great check of our synthetic division.  As we know that x= 2 is a zero of P ( x ) and we obtain any other number than zero in that last entry we will know that we've done something incorrect and we can go back and determine the mistake.

Now, let's get back to the problem.  From the synthetic division,

                                     P (x) =(x - 2) ( x2 + 4 x + 3)

Thus, this means that,

Q (x) = x2 + + 4 x + 3

and we can determine the zeroes of this. Here they are,

Q ( x )= x2 + 4 x + 3 = ( x + 3) ( x + 1)

⇒         x= -3, x = -1

Thus, the three zeroes of P ( x ) are x= -3 , x= -1 & x=2 .

As an aside to the earlier example notice that now we can also completely factor the polynomial get,

                                  P ( x ) = x3 + 2 x - 5x - 6 . 

Substituting the factored form of Q ( x ) into P ( x ) we

                             P (x ) = ( x - 2) ( x + 3) (x + 1)


Related Discussions:- Determine the two zeroes - factor theorem

Help, 2. ABCD was a square sheet of paper, 6 cm on a side. As shown, corner...

2. ABCD was a square sheet of paper, 6 cm on a side. As shown, corner D was folded to point F on the diagonal BD. The area of triangle EFG equals the area of the shaded L-shaped po

Method of elimination, Now let's move into the next technique for solving s...

Now let's move into the next technique for solving systems of equations.  As we illustrated in the example the method of substitution will frequently force us to deal with fraction

HELP!, you have just been hired as manager of pi pizza, a small business th...

you have just been hired as manager of pi pizza, a small business that makes frozen pizzas for sale. Pi makes 12 inch pizzas for a profit of $2 a box and 16 inch pizzas for a profi

Combining like terms, 7x to the 2 power y -9x to the 2 power y-2x to the 2 ...

7x to the 2 power y -9x to the 2 power y-2x to the 2 power y

Angles and sides, what is the missing angle of 37 degree and 92 drgees

what is the missing angle of 37 degree and 92 drgees

Examples of polynomial, Examples of  polynomial that  doesn't factor No...

Examples of  polynomial that  doesn't factor Now, all of the examples that we've worked to this point comprised factorable polynomials. However, that doesn't have to be the cas

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd