Determine the solution to the differential equation, Mathematics

Assignment Help:

Determine the solution to the subsequent differential equation.

dv/dt = 9.8 - 0.196v

Solution

Initially we require finding out the differential equation in the accurate form.

dv/dt + 0.196v = 9.8

By this we can notice that p(t)=0.196 and so µ(t) is after that:

µ (t) = e∫0.196 dt = e 0.196t  

Remember that officially there must be a constant of integration in the exponent by the integration. Though, we can drop that for accurately the same purpose which we dropped the k from the (8).

Currently multiply all the terms in the differential equation through the integrating factor and do several simplifications

1973_Determine the solution to the differential equation.png

Integrate both sides and remember that the constants of integration that will happen from both integrals.

∫e0.196t v)' dt = ∫9.8 e0.196t dt

e0.196t v + k = 50 e0.196t + c

This time we have to play with constants again.  We can subtract k from both sides to determine.

e0.196t v = 50 e0.196t + c - k

Both c and k are unidentified constants and thus the difference is also an unidentified constant.  We will thus write the difference as c.  Accordingly, we here have  

e0.196t v = 50 e0.196t + c

By this point on we will only place one constant of integration down as we integrate both sides identifying that if we had written down one for all integrals, as we must, the two would just end up getting absorbed in each other.

The last step in the solution process is afterward to divide both sides via e0.196t or to multiply both sides via e-0.196t.  Either will work, although I generally prefer the multiplication route.  Doing this provides the general solution to the differential equation.

v(t) = 50 + ce-0.196t

By the solution to this illustration we can now notice why the constant of integration is so significant in this process. Without this, in this case, we would find a single, constant solution, v(t)=50. Along with the constant of integration we find infinitely several solutions, one for all values of c.

Back in the direction field region where we initially derived the differential equation utilized in the last illustration we used the direction field to assist us sketch several solutions. Let's notice if we found them accurate to sketch several solutions all we require to do is to pick various values of c to find a solution. Some of these are demonstrated in the graph below.

439_Determine the solution to the differential equation1.png

Thus, it seems as we did pretty good sketching the graphs back in the direction field section.

Here, recall from the Definitions section that the first Conditions will permit us to zero in on a specific solution. Solutions to first order differential equations but not just linear like we will notice will have a particular unknown constant in them and thus we will require exactly one initial condition to determine the value of which constant and thus find the solution that we were after. The first condition for first order differential equations will be of the as of form:

Y(t0) = y0

Recall also a differential equation with an enough number of initial conditions is termed as an Initial Value Problem (IVP).


Related Discussions:- Determine the solution to the differential equation

Adding equally sized groups-prerequisites for multiplication, Adding Equall...

Adding Equally Sized Groups:  Once children have had enough practice of making groups of equal size, you can ask them to add some of these equal groups. They can now begin to atte

volumes for solid of revolution, Volumes for Solid of Revolution Befo...

Volumes for Solid of Revolution Before deriving the formula for it we must probably first describe just what a solid of revolution is. To find a solid of revolution we start o

Determine how many valid fortran identifiers, A valid identifier in the pro...

A valid identifier in the programming language FORTAN contains a string of one to six alphanumeric characters (the 36 characters A, B,...., Z, 0, 1,...9) starting with a letter. De

How to plot line graphs, Q. How to plot Line Graphs? Ans. Line gra...

Q. How to plot Line Graphs? Ans. Line graphs can be useful in analyzing data. They are particularly helpful when you are interpolating or extrapolating information from y

Find the original average of boys and girls in the class, When 6 boys were ...

When 6 boys were admitted & 6 girls left the percentage of boys increased from 60% to 75%. Find the original no. of boys and girls in the class. Ans: Let the no. of Boys be x

DIFFERENTIAL EQUATIONS, WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLED...

WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLEDGE OF DIFFERNTIAL EQUATIONS?

Parallel and perpendicular lines, The last topic that we have to discuss in...

The last topic that we have to discuss in this section is that of parallel & perpendicular lines. Following is a sketch of parallel and perpendicular lines. Suppose that th

What is the maximum amount of hours cindy worked together, Carl worked thre...

Carl worked three more than twice as many hours as Cindy did. What is the maximum amount of hours Cindy worked if together they worked 48 hours at most? Let x = the amount of h

Distribution of sample distribution or sampling means , Distribution of Sam...

Distribution of Sample distribution or Sampling means A sample of size n is taken from the parent population and mean of the sample is estimated. It is repeated for a number o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd