Polynomials in one variable, Mathematics

Assignment Help:

Polynomials

In this section we will discuss about polynomials.  We will begin with polynomials in one variable.

Polynomials in one variable

Polynomials in one variable are algebraic expressions which contain terms in the form axwhere n refer to a non-negative (that means positive or zero) integer and a refer to a real number and is termed as the coefficient of the term.  The degree of a polynomial in one variable is the biggest exponent in the polynomial.

Note that we will frequently drop the "in one variable" part and only say polynomial. Here are instance of polynomials and their degrees.

5x12 - 2x6 + x5 -198x + 1                                                          degree : 12

x4 - x3 + x2 - x + 1                                                                    degree : 4

56x23                                                                                        degree : 23

5x - 7                                                                                       degree : 1

-8                                                                                              degree : 0

Thus, a polynomial doesn't have to contain all powers of x . Also, polynomials can contain a single term.

Here are some instances that aren't polynomials.

4x6 + 15x-8 +1

5 √ x - x+ x2

2/x +x3 -2 = 2x-1+x3-2

The first one isn't polynomial as it has a negative exponent and all exponents in a polynomial must be positive.

To illustrate why the second one isn't a polynomial rewrite it a little.

                               5 √ x - x+ x2 = 5x1/2-x+x2

By changing the root to exponent form we illustrates that there is rational root in the algebraic expression.  In the algebraic expression all of the exponents have to be integers in order for the algebraic expression to be a polynomial.  As a general rule of thumb if an algebraic expression contain a radical in it then it isn't polynomial.

Let's rewrite the third equation to see why it isn't polynomial.

2/x +x3 -2 = 2x-1+x3-2

Thus, this algebraic expression really contains a negative exponent in it and it isn't allowed.  Another rule of thumb is if there are variables in the denominator of a fraction then the algebraic expression isn't a polynomial.

Another rule of thumb is if there are any variables in denominator of fraction then the algebraic expression isn't a polynomial.

Notice that it doesn't mean that radicals and fractions aren't let in polynomials. They only can't involve the variables. For example, the following is a polynomial

1854_Polynomials in one variable.png

There are many radicals & fractions in this algebraic expression, however the denominators of the fractions are only numbers and the radicands of each radical are only a numbers. In the algebraic expression each x appears into the numerator and the exponent is a positive (or zero) integer. Hence this is a polynomial.


Related Discussions:- Polynomials in one variable

Real constant and difference equation, Derive for the filter from z=a and p...

Derive for the filter from z=a and poles at z=b andz=c, where a, b, c are the real constants the corresponding difference equation. For what values of parameters a, b, and c the fi

Initial conditions to find system of equations, Solve the subsequent IVP. ...

Solve the subsequent IVP. y′′ + 11y′ + 24 y = 0 y (0) =0  y′ (0)=-7  Solution The characteristic equation is as r 2 +11r + 24 = 0 ( r + 8) ( r + 3) = 0

The mean value theorem for integrals, The Mean Value Theorem for Integrals ...

The Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus, a ∫ b f(x) dx = f(c)(b -a) Proof Let's begin

probability , An engineer has 200 resistors that he keeps in one box. Resi...

An engineer has 200 resistors that he keeps in one box. Resistors are colored to help their identification, and in this box there are 30 white resistors, 50 black resistors, 80 red

Fractions Word Problem, 1/8 of the passengers of a train were children.If t...

1/8 of the passengers of a train were children.If there were 40 children travelling in the train on a certain day,how many adults were there in that train that day?

Porportions, how do you solve for porportions?

how do you solve for porportions?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd