Polynomials in one variable, Mathematics

Assignment Help:

Polynomials

In this section we will discuss about polynomials.  We will begin with polynomials in one variable.

Polynomials in one variable

Polynomials in one variable are algebraic expressions which contain terms in the form axwhere n refer to a non-negative (that means positive or zero) integer and a refer to a real number and is termed as the coefficient of the term.  The degree of a polynomial in one variable is the biggest exponent in the polynomial.

Note that we will frequently drop the "in one variable" part and only say polynomial. Here are instance of polynomials and their degrees.

5x12 - 2x6 + x5 -198x + 1                                                          degree : 12

x4 - x3 + x2 - x + 1                                                                    degree : 4

56x23                                                                                        degree : 23

5x - 7                                                                                       degree : 1

-8                                                                                              degree : 0

Thus, a polynomial doesn't have to contain all powers of x . Also, polynomials can contain a single term.

Here are some instances that aren't polynomials.

4x6 + 15x-8 +1

5 √ x - x+ x2

2/x +x3 -2 = 2x-1+x3-2

The first one isn't polynomial as it has a negative exponent and all exponents in a polynomial must be positive.

To illustrate why the second one isn't a polynomial rewrite it a little.

                               5 √ x - x+ x2 = 5x1/2-x+x2

By changing the root to exponent form we illustrates that there is rational root in the algebraic expression.  In the algebraic expression all of the exponents have to be integers in order for the algebraic expression to be a polynomial.  As a general rule of thumb if an algebraic expression contain a radical in it then it isn't polynomial.

Let's rewrite the third equation to see why it isn't polynomial.

2/x +x3 -2 = 2x-1+x3-2

Thus, this algebraic expression really contains a negative exponent in it and it isn't allowed.  Another rule of thumb is if there are variables in the denominator of a fraction then the algebraic expression isn't a polynomial.

Another rule of thumb is if there are any variables in denominator of fraction then the algebraic expression isn't a polynomial.

Notice that it doesn't mean that radicals and fractions aren't let in polynomials. They only can't involve the variables. For example, the following is a polynomial

1854_Polynomials in one variable.png

There are many radicals & fractions in this algebraic expression, however the denominators of the fractions are only numbers and the radicands of each radical are only a numbers. In the algebraic expression each x appears into the numerator and the exponent is a positive (or zero) integer. Hence this is a polynomial.


Related Discussions:- Polynomials in one variable

Definition of a function, Definition of a Function Now we need to move...

Definition of a Function Now we need to move into the second topic of this chapter.  Before we do that however we must look a quick definition taken care of.

Time & distance., Q4. Assume that the distance that a car runs on one liter...

Q4. Assume that the distance that a car runs on one liter of petrol varies inversely as the square of the speed at which it is driven. It gives a run of 25km per liter at a speed o

What was the original price of the coat before tax, Nick paid $68.25 for a ...

Nick paid $68.25 for a coat, including sales tax of 5%. What was the original price of the coat before tax? Since 5% sales tax was added to the cost of the coat, $68.25 is 105%

Solution to an equation or inequality, First, a solution to an equation or ...

First, a solution to an equation or inequality is any number that, while plugged into the equation/inequality, will satisfy the equation/inequality. Thus, just what do we mean by

Draw tangent graph y = sec ( x ), G raph y = sec ( x ) Solution: As wi...

G raph y = sec ( x ) Solution: As with tangent we will have to avoid x's for which cosine is zero (recall that sec x =1/ cos x) Secant will not present at

Integration, R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

R={(r, ?):1=r= 2cos? ,-p/3= ? =p/3

Tchebecheffs ineqality theorom, what are the advantages and disadvantages o...

what are the advantages and disadvantages of tchebycheffs inequality theorem

What was the total cost of her order, Leslie ordered a slice of pizza for $...

Leslie ordered a slice of pizza for $1.95, a salad for $2.25, and a soda for $1.05. What was the total cost of her order? The cost of every item must be added together; $1.95 +

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd